首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The imaging frequency and synoptic coverage of the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) make possible for the first time a phenological approach to vegetation cover classification in which classes are defined in terms of the timing, the duration and the intensity of photosynthetic activity. This approach, which exploits the strong, approximately linear relationship between the amount of solar irradiance absorbed by plant pigments and shortwave vegetation indices calculated from red and near-infrared reflectances, involves a supervised binary decision tree classification of phytophenological variables derived from multidate normalized difference vegetation index (NDVI) imagery. A global phytophenological classification derived from NOAA global vegetation index imagery is presented and discussed. Although interpretation of the various classes is limited considerably by the quality of global vegetation index imagery, the data show clearly the marked temporal asymmetry of terrestrial photosynthetic activity.  相似文献   

2.
Abstract

The phenology of Iberian vegetation is described using twelve full resolution Advanced Very High Resolution Radiometer short wave vegetation index images for the period April to October 1985 and 1986. The characteristics of the most appropriate vegetation classification scheme for use with these data are discussed.  相似文献   

3.
During 1997 Papua New Guinea (PNG) experienced an intense drought. Emergency famine relief operations provided many subsistence agricultural communities with food, water and health provisions during the height of the drought. The locations of relief operations were based on a rapid and spatially explicit extensive field survey conducted at the height of the drought for all PNG. We have tested the utility of composite Advanced Very High Resolution Radiometer (AVHRR) data to assist in a rapid assessment of drought conditions in PNG. Composited data were used to provide a means to overcome the frequent cloudy conditions that exist in PNG. To assess the drought we divided land surface temperatures (T s) by the Normalized Difference Vegetation Index (NDVI). The ratio (T s/NDVI) increases during times of drought. This is due to the increase in T s associated with more net radiation being partitioned into the sensible heat flux and the decrease in NDVI associated with decreasing amounts of plant cover. A time series of T s/NDVI is a rapid indicator of the drought at the country and province level. We calculated the integral under the T s  相似文献   

4.
A microwave backscattering model for shrub clumps was presented. The modelling approach was to treat the clumps as scatterers and attenuators. Three major model components were defined: surface backscattering, clump volume scattering, and multiple path interactions between clumps and ground. Total backscatter was computed by incoherent summation of the components. We then used the model to study the effects of variations in surface and willow properties (soil moisture content, and surface roughness rms height and correlation length, and willow ground coverage, clump height, and stem density) on backscatter from willows in Alaskan boreal forest region. We examined the sensitivity to variations of the six parameters combined and to variation of each parameter alone from willows of three clump sizes representing different stages of vegetation regrowth after fire. Modelled C-band backscatter was more sensitive to the variations of the surface and willow parameters than L-band backscatter at incidence angles between 20° and 60°. At incidence angles of 20-60°, C-HH and C-VV backscatter was sensitive to the variations of the three surface parameters. L-HV and L-VV backscatter were only sensitive to the moisture variation. Among the three willow parameters, change of willow ground coverage produced more sensitive cases than variations of clump height and stem density combined at C- and L-band.  相似文献   

5.
A method is developed to separate Normalised Difference Vegetation Index (NDVI) time series data into contributions from woody (perennial) and herbaceous (annual) vegetation, and thereby to infer their separate leaf area indices and cover fractions. The method is formally consistent with fundamental linearity requirements for such a decomposition, and is capable of rejecting contaminated NDVI data. In this study, estimates of annual averaged woody cover and monthly averaged herbaceous cover over Australia are determined using Pathfinder AVHRR Land series (PAL) Global Area Coverage (GAC) Advanced Very High Resolution Radiometer (AVHRR) NDVI data from 1981 to 1994, together with ground-based measurements of leaf area index (LAI) and foliage projective cover (FPC).  相似文献   

6.
Abstract

Advanced Very High Resolution Radiometer (AVHRR) data have been examined with a view to assessing their suitability for identifying and mapping the systematic patterns left on the landscape by the glaciation of continental areas. The study was carried out with data from a region of southern Finland. Following a print-based study, digital data were obtained and it was found that band 2 is particularly useful for the recognition of lineation patterns, band 3 for identifying major morainic features and principal component 2 for discriminating radial lineation patterns. The major glacial features for the study area were plotted from the AVHRR data and they confirmed interpretations previously constructed from ground data and aerial survey methods. It is envisaged that AVHRR could be used successfully for mapping glacial geological evidence over a wide area and hence for the reconstruction and modelling of former ice-sheet patterns.  相似文献   

7.
Abstract

Problems of accurate discrimination between snow and cloud, together with the detection of the snow pack boundary, have handicapped the use of satellite data in operational snow-cover mapping systems. A technique, involving an unsupervised clustering procedure, is described which allows the removal of cloud areas using NOAA-9 Advanced Very High Resolution Radiometer (AVHRR) channel-1, channel-3 and channel-4 data in conditions of recent snow lie and a difference channel (channel-2 —channel-1 with channel-3 and channel-4) during periods of advanced snow melt. Accurate delineation of snow extent is provided by the techniques if these specified snow conditions are taken into account. A method for the identification of areas of marginal snow melt is also presented, based on comparisons with Landsat Thematic Mapper data. The classifications also enable the determination of snow areas influenced by cloud shadows and conifer forest in addition to separating areas of differing snow depth and percentage cover.  相似文献   

8.
Estimation of forest cover change is important for boreal forests, one of the most extensive forested biomes, due to its unique role in global timber stock, carbon sequestration and deposition, and high vulnerability to the effects of global climate change. We used time-series data from the MODerate Resolution Imaging Spectroradiometer (MODIS) to produce annual forest cover loss hotspot maps. These maps were used to assign all blocks (18.5 by 18.5 km) partitioning the boreal biome into strata of high, medium and low likelihood of forest cover loss. A stratified random sample of 118 blocks was interpreted for forest cover and forest cover loss using high spatial resolution Landsat imagery from 2000 and 2005. Area of forest cover gross loss from 2000 to 2005 within the boreal biome is estimated to be 1.63% (standard error 0.10%) of the total biome area, and represents a 4.02% reduction in year 2000 forest cover. The proportion of identified forest cover loss relative to regional forest area is much higher in North America than in Eurasia (5.63% to 3.00%). Of the total forest cover loss identified, 58.9% is attributable to wildfires. The MODIS pan-boreal change hotspot estimates reveal significant increases in forest cover loss due to wildfires in 2002 and 2003, with 2003 being the peak year of loss within the 5-year study period. Overall, the precision of the aggregate forest cover loss estimates derived from the Landsat data and the value of the MODIS-derived map displaying the spatial and temporal patterns of forest loss demonstrate the efficacy of this protocol for operational, cost-effective, and timely biome-wide monitoring of gross forest cover loss.  相似文献   

9.
We have developed and tested a method for mapping above-ground forest biomass of black spruce (Picea mariana (Mill.) B.S.P.) stands in northern boreal forests of eastern Canada. The method uses QuickBird images and applies image processing algorithms to extract tree shadow fraction (SF) as a predictive variable for estimating biomass. Three QuickBird images acquired over three test sites and 108 ground sample plots (GSP) were used to develop and test the method. SF was calculated from the fraction of tree shadow area over the area of a reference square overlaid on the images. Linear regressions between biomass of GSP and SF from the images for each test site resulted in R2 in the range from 0.85 to 0.87 (except one case at 0.41), RMSE of 11 to 18 t/ha and bias of 2 to 5 t/ha. Statistical tests demonstrated that local regressions for the three test sites were not statistically significantly different. Consequently, a global regression was calculated with all GSP and produced R2, RMSE, and bias of 0.84, 14.2 t/ha and 4.2 t/ha, respectively. While generalization of these results to extended areas of the boreal forest would require further assessment, the SF method provided an efficient means for mapping biomass of black spruce stands for three test areas that are characteristic of the northern boreal forest of eastern Canada (boreal and taiga shield ecozones).  相似文献   

10.
Abstract

Initial observations on the effects of wildfires in black spruce forests on radar backscatter are presented. Airborne and spaceborne SAR imagery are utilized to illustrate two distinct fire signatures. A theory is presented to explain these differences.  相似文献   

11.
Abstract

The Advanced Very High Resolution Radiometer (AVHRR) is currently the only operational remote sensing system capable of providing global daily data which can be used for vegetation monitoring. These data are available with resolution cell sizes ranging from around one to 20 km on a side, though the temporal and spatial extent of cover at each resolution is variable. In this paper Normalized Difference Vegetation Index temporal curves derived from AVHRR at different resolutions are compared over both agricultural and natural tropical vegetation types. For the agricultural regions the length of growing season and major breaks of slope associated with key crop development events are equally well shown at coarse and fine resolution. Detailed examination of the curves reveals differences thought to result from temporal changes in landscape structure. Temporal curves derived from AVHRR data at dilTerent spatial resolutions shows that the spatial organization of both agricultural and natural landscapes, tropical forest in this case, changes throughout a single season. Transitions across major ecological zones are detected across a range of resolutions, though the undersampling employed in the generation of the coarser resolution products is found to exert some limitations on the spatial representivity of these data; this varies both with geographical area and time. These observations highlight the importance of a consideration of scale when using AVHRR data for vegetation monitoring, and emphasize the need for dilTerent scales of observation (both in temporal and spatial terms) for different problems and at different times of the year.  相似文献   

12.
Light use efficiency (LUE) is an important variable characterizing plant eco-physiological functions and refers to the efficiency at which absorbed solar radiation is converted into photosynthates. The estimation of LUE at regional to global scales would be a significant advantage for global carbon cycle research. Traditional methods for canopy level LUE determination require meteorological inputs which cannot be easily obtained by remote sensing. Here we propose a new algorithm that incorporates the enhanced vegetation index (EVI) and a modified form of land surface temperature (Tm) for the estimation of monthly forest LUE based on Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. Results demonstrate that a model based on EVI × Tm parameterized from ten forest sites can provide reasonable estimates of monthly LUE for temperate and boreal forest ecosystems in North America with an R2 of 0.51 (p < 0.001) for the overall dataset. The regression coefficients (a, b) of the LUE–EVI × Tm correlation for these ten sites have been found to be closely correlated with the average EVI (EVI_ave, R2 = 0.68, p = 0.003) and the minimum land surface temperature (LST_min, R2 = 0.81, p = 0.009), providing a possible approach for model calibration. The calibrated model shows comparably good estimates of LUE for another ten independent forest ecosystems with an overall root mean square error (RMSE) of 0.055 g C per mol photosynthetically active radiation. These results are especially important for the evergreen species due to their limited variability in canopy greenness. The usefulness of this new LUE algorithm is further validated for the estimation of gross primary production (GPP) at these sites with an RMSE of 37.6 g C m? 2 month? 1 for all observations, which reflects a 28% improvement over the standard MODIS GPP products. These analyses should be helpful in the further development of ecosystem remote sensing methods and improving our understanding of the responses of various ecosystems to climate change.  相似文献   

13.

The borderline between Israel and Sinai is characterized by a sharp contrast that is caused by the low spectral reflectance on the Israeli side (Negev desert) and the high spectral reflectance on the bare Egyptian side (Sinai desert). This contrast across the political border has been discussed in many publications over the last two decades. In this study, satellite images acquired by NOAA Advanced Very High Resolution Radiometer (AVHRR) over a time period of 3 years (June 1995 to June 1998) were analysed. In addition, extensive field studies were carried out on the Israel side of the border. The current research shows that the reflectance values in Sinai seem to be quite stable over the entire year, however reflectance values in the Negev show a significant difference between the dry and the rainy seasons. Comparison between the AVHRR-derived Normalized Difference Vegetation Index (NDVI ) values and rainfall data from the Negev shows that the highest AVHRR-derived NDVI values occur a few weeks after the main rainfall. Field observations, based on spectrometer measurements of different surface components (bare sands, biological soil crusts, annuals, and perennials) and estimation of vegetation cover on the Israeli side of the border, show that the peak NDVI of the perennials occurs at the same time as the satellite observed peak. The spectral difference between both sides of the border during the dry season is caused by the dense cover of the higher vegetation and the biological soil crusts and by the photosynthetic activity of perennials during the dry season. The highest difference between both sides during the rainy season is caused by the photosynthetic activity and vegetation cover of the annuals and perennials.  相似文献   

14.
In this paper a hierarchical approach is taken to classify temporal sequences of images of the Normalized Difference Vegetation Index (NDVI) from the Advanced Very High Resolution Radiometer (AVHRR), using Iberia as an example. Iberia is a convenient area of study because it has a high environmental diversity and very strong environmental gradients, and yet a reduced size at the spatial resolution of current global data-sets. An Iberian subset of a global temporal series of AVHRR-NDVI images facilitates test and validation of different approaches while producing results that are likely to be valid over much larger areas. Our hierarchical clustering approach yields maps with nested legends. We compare these maps to a digitized map of potential natural vegetation, which reveals a clear bioclimatic control. The highest level of the hierarchical classification separates vegetation with a Summer peak of NDVI from vegetation with a Spring peak of NDVI. Such a discontinuity corresponds to the discontinuity between Atlantic and Submediterranean vegetation in the vegetation map. Lower levels in the hierarchical classification produce maps of increasing complexity but that keep a high degree of spatial continuity. A correspondence analysis between a 16-classes NDVI map and the digitized map of potential vegetation produces an ordination that is bioclimatically coherent. According to the known characteristics of the potential vegetation units, the two first correspondence axes can be interpreted, respectively, as water availability and temperature. These results are a consequence of the temporal NDVI series being an accurate signal of vegetative phenology, which in turn is a fundamental vegetation property. A comparison of our results with several global land cover digital maps by means of the Wilk's ratio indicates that the global maps do not produce an appropriate partition of the region in terms of the NDVI temporal course. We conclude that the analysis of temporal series of NDVI yield relevant ecological information at finer scales and with more detailed legends that had not been attempted until now, and, therefore, are suitable for regional scale applications. Our results also indicate the interest of a bioclimatic analysis and modeling of the NDVI signatures for their correct ecological understanding. Maps at a global scale can be produced based on such an understanding.  相似文献   

15.
Abstract

Tropical forest assessment using data from the Advanced Very High Resolution Radiometer (AVHRR) may lead to inaccurate estimates of forest cover in regions of small subpixel forest or non-forest patches and in regions where the pattern of clearance is particularly convoluted. Test sites typifying these two patterns were chosen in Ghana and Rondonia, respectively. To capture the subpixel proportions of forest cover, a linear mixture model was applied to two AVHRR test images over the test sites. The model produced image outputs in which pixel intensities indicated the proporton of forest cover per km2. For comparison, supervised maximum likelihood classifications were also performed. The outputs were assessed against classified Landsat TM scenes, converted to proportions maps and coregistered to the AVHRR images. An empirical method was applied for determining the critical forest cover per km2 needed for an AVHRR pixel to be classified as forest. The critical values exceeded 50 per cent, indicating a tendency for AVHRR classification to underestimate forest cover. This was confirmed by comparing estimates of total forest cover obtained from the AVHRR and TM classifications. In the case of Ghana, a more accurate estimate of forest cover was obtained from the AVHRR mixture model than from the classification. Both mixture model outputs were found to be well correlated with those from Landsat TM. Further work should test the robustness of the approach adopted here when applied to much larger areas.  相似文献   

16.
The relationship between AVHRR-derived normalized difference vegetation index (NDVI) values and those of future sensors is critical to continued long-term monitoring of land surface properties. The follow-on operational sensor to the AVHRR, the Visible/Infrared Imager/Radiometer Suite (VIIRS), will be very similar to the NASA Earth Observing System's Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. NDVI data derived from visible and near-infrared data acquired by the MODIS (Terra and Aqua platforms) and AVHRR (NOAA-16 and NOAA-17) sensors were compared over the same time periods and a variety of land cover classes within the conterminous United States. The results indicate that the 16-day composite NDVI values are quite similar over the composite intervals of 2002 and 2003, and linear relationships exist between the NDVI values from the various sensors. The composite AVHRR NDVI data included water and cloud masks and adjustments for water vapor as did the MODIS NDVI data. When analyzed over a variety of land cover types and composite intervals, the AVHRR derived NDVI data were associated with 89% or more of the variation in the MODIS NDVI values. The results suggest that it may be possible to successfully reprocess historical AVHRR data sets to provide continuity of NDVI products through future sensor systems.  相似文献   

17.
We used multiple regression analysis to relate evapotranspiration (ET), computed from a water balance technique, to both thermal infrared and normalized difference vegetation index data obtained from the Advanced Very High Resolution Radiometer (AVHRR) sensor on board on the National Oceanic and Atmospheric Administration (NOAA) satellite. This approach, based on only remotely sensed data, provided a reliable estimate of ET over the Pampas, the main agricultural region of Argentina. The relationship between spectral data and ET was more sensitive to the dates than to the sites used to generate the models.  相似文献   

18.

The Changbai Mountain Natural Reserve (2000 km 2 ), north-east China, is a very important ecosystem representing the temperate biosphere. The cover types were derived by using multitemporal Landsat TM imagery, which was modified with DEM data on the relationship between vegetation distribution and elevation. It was classified into 20 groups by supervised classification. By comparing the results of the classification of different band combinations, bands 4 and 5 of an image from 18 July 1997 and band 3 of an image from 22 October 1997 were used to make a false colour image for the final output, a vegetation map, which showed the best in terms of classification accuracy. The overall accuracy by individual images was less than 70%, while that of the multitemporal classification was higher than 80%. Further, on the basis of the relationship of vegetation distribution and elevation, the accuracy of multitemporal classification was raised from 85.8 to 89.5% by using DEM. Bands 4 and 5 showed a high ability for discriminating cover types. Images acquired in late spring and mid-summer were recognized better than other seasons for cover type identification. NDVI and band ratio of B4/B3 proved useful for cover type discrimination, but were not superior to the original spectral bands. Other band ratios like B5/B4 and B7/B5 were less important for improving classification accuracy. The changes of spectral reflectance and NDVI with season were also analysed with 10 images ranging from 1984 to 1997. Seperability of images in terms of classification accuracy was high in late spring and summer, and decreased towards winter. There were five vegetation zones on the mountain, from the base to the peak: deciduous forest zone, mixed forest zone, conifer forest zone, birch forest zone and tundra zone. Spruce-fir conifer dominated forest was the most dominant vegetation (33%), followed by mixed forest (26%), Korean pine forest (8%) and mountain birch forest (5%).  相似文献   

19.
Abstract

We have conducted a cloud-cover analysis of AVHRR scenes of Britain for April-September for the years 1982-1985 and interpreted the results in terms of the usefulness of the data for the studying of agricultural strawburning.  相似文献   

20.
Global Vegetation Index (GVI) data from the Advanced Very High Resolution Radiometer (AVHRR) was used to identify macro-scale vegetation/ land cover regions in the former Soviet Union (FSU). These regions are a better representation of surface vegetation and land cover than can be obtained from existing thematic maps of the FSU. Image classes were identified through cluster analysis using the ISODATA clustering algorithm and a maximum likelihood classifier. Qualitative analysis of the image variants produced with different input parameters indicated that an image with 42 classes best represented significant details in vegetation and land cover patterns without producing uninterpretable levels of details that represent artefacts of the clustering algorithm. Initial identification of image classes has been made by considering the weight of evidence provided by quantitative and qualitative analysis of existing maps, analytical tools from class statistics, ancillary data from a variety of sources and expert assessment by Russian scientists with extensive field experience in the FSU. Overall, this method of image classification using GVI data appears to describe accurately regions with similar vegetation and hind cover across the FSU. Some questions regarding the identification of wetlands and potential problems with classification in the Russian high arctic are discussed. The products of this research will help improve carbon budget estimates of the FSU by providing accurate delineation and definition of carbon quantifiable regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号