首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Biodiesel is a promising renewable alternative fuel for diesel. The need of biodiesel fuels for the diesel engines is to restrict the dependency on the fossil fuels in context to the world energy oil crisis. The objective of this article is to investigate the performance and emission characteristics of a CI engine with diesel and blends of canola biodiesel Emulsion at 200, 220 and 240?bar. The fuel injection system in a diesel engine is to achieve a high degree of atomisation for better penetration of fuel in order to utilise the full air charge and to promote the evaporation in a very short time and to achieve higher combustion efficiency. Emulsified fuels showed an improvement in brake thermal efficiency of 28.8% at 240?bar accompanied by the drastic reduction in NOx at 200?bar.  相似文献   

2.
The current state of future energy and environmental crises has revitalised the need to find alternative sources of energy due to escalating oil prices and depleting oil reserves. To meet increasing energy requirements, there has been a growing interest in alternative fuels like biodiesel that can become a suitable diesel fuel substitute for compression ignition engine. Biodiesel offers a very promising alternative to diesel fuel, since they are renewable and have similar properties. Calophyllum inophyllum seed oil collected from different restaurants in the Nagapattinam region of South India was converted into methyl esters (biodiesel) by transesterification. Biodiesel produced from C. inophyllum oil was blended with diesel by different volume proportions (25%, 50%, and 75%). Biodiesel and its blends were tested on a direct injection (DI) diesel engine at a constant speed by varying loads from 0% to 100% in steps of 20% to analyse its performance, emission, and combustion characteristics. The results obtained were compared with that of diesel fuel. B25 (27.5%) showed better performance than diesel fuel (26.28%) at full load and B50 showed performances similar to diesel fuel. Smoke density of B25 was slightly (2.6%) higher than that of diesel at full load conditions. At full load, measured carbon monoxide emissions for B25 and B50 were 4% lower than that of diesel. Hydrocarbon emissions for B25 and B100 were 5.37% and 25.8% higher than that of diesel, respectively. Nitrogen oxides (NOx) emission was lower for all biodiesel blends. NOx emissions of B100 and B75 were lower than that of diesel by 22.16% and 13.29% at full load, respectively. Combustion profile was smoother, and no knocking problem was observed while operating with biodiesel blends. B75 produced peak cylinder pressure.  相似文献   

3.
The present work deals about the performance, emission and combustion characteristics of a four-cylinder, direct injection, water-cooled, Indica diesel engine fuelled with biodiesel produced through the hydrodynamic cavitation method from an underutilised and potential feedstock Yellow Oleander (Thevetia peruviana) oil. Engine tests were performed with neat diesel and biodiesel blends of 10%, 20% and 30% from Yellow Oleander oil at different engine speeds. Experimental results showed that biodiesel produced through the hydrodynamic cavitation technique with a 1%?w/w catalyst percentage, 6:1?molar ratio and 35?min reaction time was equal to 97.5%. During engine performance tests, biodiesel blends showed higher brake-specific fuel consumption, brake thermal efficiency (for lower blends up to 20%) and exhaust gas temperature than diesel fuel. Engine emissions showed higher nitrogen oxide, but a decreased amount of smoke opacity, carbon monoxide, unburned hydrocarbon and favourable pθ diagram as compared to diesel.  相似文献   

4.
In this investigation, biogas (BG) was used as an alternative fuel in a single-cylinder, four-stroke, air-cooled, direct injection (DI) diesel engine that was operated on a dual fuel mode. Biogas was produced from a non-edible seed de-oiled cake-pongamia pinnata (Karanja), which was collected from the biodiesel industries. The BG was inducted along with the air in suction of the engine at four different flow rates varying from 0.3?kg/h to 1.2?kg/h in steps of 0.3?kg/h. The investigation results revealed that BG inducted at a flow rate of 0.9?kg/h gives better combustion characteristics of engine behaviour than those of other flows throughout the engine operation. The ignition delay (ID) and combustion duration of the engine run by dual fuel operation at a BG flow rate of 0.9?kg/h were found to be longer by about 2 °CA and 2.9 °CA, respectively, in comparison with diesel at full load. The cylinder peak pressure was found to be overall higher by about 11?bar than that of diesel at full load.  相似文献   

5.
This article is an effort to address the need for a non-cooking oil-based biodiesel. Here, the experimental work is done on a single cylinder, direct injection CI engine using cashew nut shell oil biodiesel blends under constant speed. The cashew nut shell liquid (CNSL) biodiesel is blended with the diesel fuel and used as biodiesel blend. Blends used for testing are B20, B40 and B60. The effect of the fuels on engine power, brake thermal efficiency (BTE) and exhaust gas temperature was determined by performance tests. The influences of blends on CO, CO2, HC and NOx emissions were investigated by emission tests. The BTE values of biodiesel are closer to diesel. Compared to diesel, all the biodiesel blends gave lesser unburnt hydrocarbon (HC), carbon monoxide (CO) and smoke emissions. Slightly higher NOx emissions were found in CNSL biodiesel blends, which is typical of the other biodiesels.  相似文献   

6.
The present experimental investigation focuses on the combined effects of multiwalled carbon nanotubes (MWCNTs) and exhaust gas recirculation (EGR) of a diesel engine fuelled with Calophyllum inophyllum biodiesel blends. The C. inophyllum biodiesel-diesel blend was prepared in a proportion of 20% biodiesel and 80% diesel (B20) by a volumetric basis with a magnetic stirrer. The MWCNTs (in the mass fraction of 40?ppm) were dispersed into the B20 fuel with the help of an ultrasonicator. The results show that brake thermal efficiency increases by 7.6% with the addition of MWCNTs to the B20 fuel, decreases by 2.42% with the EGR to the B20 fuel, and increases by 2.26% with the addition of MWCNTs and EGR to the B20 fuel compared to the B20 fuel. The maximum cylinder pressure and heat release rate was occurred as 67.35 bar and 74.80?kJ/m3 deg for the B20MWCNT40 fuel at full load condition. The CO and HC emissions for the B20MWCNT40+20%EGR fuel sample were lower compared to the B20 fuel. The Smoke emissions were reduced for B20MWCNT40 fuel compared to the B20 fuel. The NOx emissions were reduced by 25.6%, 29.7% for B20+20%EGR, B20MWCNT40+20%EGR fuel samples compared to the B20 fuel.  相似文献   

7.
The current work is to investigate the diesel engine performance and combustion characteristics fuelled with Banalities aegyptiaca (BA) biodiesel and compare those with the performance and combustion characteristics of palm biodiesel, sesame biodiesel,rapeseed biodiesel, soybean biodiesel and diesel fuel. In this study, only 10% of each biodiesel (BA10, PALM10, SESAME10, RAPESEED10 and SOYBEAN10) was tested in a diesel engine. The physical properties of all the fuel samples are mentioned and compared with ASTM standards. The test rig consists of a single cylinder, auxiliary water-cooled and computer-based variable compression ratio diesel engine, which was used to evaluate their performance at a measured torque. All biodiesel fuel samples reduce brake power and brake thermal efficiency and increase brake-specific fuel consumption rate than diesel fuel. Combustion characteristics results indicated that the blended fuel samples performed with a significant reduction in terms of cylinder pressure and heat release rate compared with diesel fuel apart from diesel pressure. Among the biodiesel-blended fuel samples, BA10 showed better performance in terms of brake power, brake-specific fuel consumption and brake thermal efficiency and cylinder pressure and heat release rate in terms of combustion characteristics compared with D100.  相似文献   

8.
ABSTRACT

Large amount of emissions from vehicles have led to the degradation of urban air quality and have resulted in serious health issues. Biodiesel, a substitute fuel for diesel engine, is receiving great attention worldwide. This work investigates the merits of using neem-biodiesel and diesel blends for single cylinder small direct injection diesel engine. The energy (the first law) and exergy (the second law) analyses of direct injection diesel engine using neem-biodiesel blends have been presented. Taguchi’s ‘L’ 16’ orthogonal array has been used for the design of experiments. The engine was tested at different engine speeds, load percentages and blend ratios, using neem biodiesel. The results show that the optimum operating conditions for minimum brake specific fuel consumption are achieved when the engine speed is 1900?rev/min, load percentage is 75 and the engine is fuelled with B40.  相似文献   

9.
An investigational research is carried out to found the performance and emission characteristics of a direct injection (DI) diesel engine with cerium oxide nanoparticles additives in diesel and biodiesel blends. Mahua methyl ester was produced by transesterification and blended with diesel. Cerium oxide nanoparticles of 50 and 100?ppm in proportion are subjected to high-speed mechanical agitation followed by ultra-sonication. The experimentations was conducted on a single cylinder DI diesel engine at a constant speed of 1500?rpm using different cerium-oxide (CeO2)-blended biodiesel fuel (B20?+?50?ppm, B20?+?100?ppm, B50?+?50?ppm and B50?+?100?ppm) and the outcomes were compared with those of neat diesel and Mahua biodiesel blend (B20 and B50). The experimental results indicated that brake thermal efficiency of B20?+?100?ppm cerium oxide was increased by 1.8 with 1% betterment in specific fuel consumption. Emissions of hydrocarbon and carbon monoxide were reasonably lower than Diesel fuel.  相似文献   

10.
Rapid depletion of fossil fuel and continuous increase in gasoline prices have stimulated the search of alternative fuels. This paper deals with the prediction of engine performance, emission and combustion characteristics of compression ignition engine fuelled with fish oil biodiesel using artificial neural network (ANN). Experimental investigations are carried out in a single cylinder constant speed direct injection diesel engine under variable load conditions at different injection timings?210, 240 and 270 bTDC. The performance, combustion and emission characteristics are measured using an exhaust gas analyser, smoke meter, piezoelectric pressure transducer and crank angle encoder for different fuel blends and engine load conditions. For training the neural network, feed-forward back propagation algorithm is used. The developed ANN model predicts the performance, combustions and exhaust emissions with a correlation coefficients (R) of 0.97–0.99 and a mean relative error of 0.62–4.826%. The root mean square errors are found to be low. The developed model has found to predict accurately the engine performance, combustion and emission parameters at different injection timings.  相似文献   

11.
ABSTRACT

Biodiesel as an alternative source of petroleum fuel could reduce the dependence on petroleum products and control pollution problems. These biofuels are derived from various sources and if directly used in the engine it will not completely burn and will cause an increase in the emission level. In this experiment, 20% of rubber seed oil (B20) blended with pure diesel fuel along with aluminium oxide (Al2O3) was used in the proportions of 10?, 20 and 30?ppm. The obtained experimental results showed that the brake thermal efficiency was increased and the engine emission was reduced. And the brake-specific fuel consumption was reduced, but the NOx level increased at the proportion level at 10?ppm of nano additives. This experiment has been carried out in a single cylinder water-cooled engine connected to an electrical dynamometer without engine modification and the injection pressure and timings were maintained at the standard level designed for the engine. The dynamic energy of aluminium oxide blend with the biodiesel improved the combustion characteristics in the engine, and caused a reduction in carbon deposits by 44.8% in the cylinder wall.  相似文献   

12.
The transport sector is the most essential driver of growth and economic development, which is one of the biggest contributors to climate change, responsible for almost a quarter of the global carbon dioxide emissions. In this paper, the experiments were conducted for an injection timing of 21° with standard injection pressure of 220?bar at different proportions such as 20%, 40% and 60% of biodiesel blends with pure diesel fuel. Other parameters like injection pressure and mass flow rate are kept constant. The performance parameters for running the engine are 1500?rpm and a rated power of 4.4?kW. The performance test resulted in the increased BTE and reduction in the SFEC for B20 blend as compared to the other proportions. The emission characteristics show that the CO, UHC and NOx were decreased for B20 when compared with the other proportions.  相似文献   

13.
In the present investigation, the effect of thermal barrier coated piston on the performance and emission characteristics of mahua-biodiesel-fuelled diesel engine was studied and compared with those of neat diesel fuel. The piston, cylinder walls and the valves of the engine were coated with 0.25?mm thickness of Al2O3 material without affecting the compression ratio of the engine. Experiments were conducted using diesel and biodiesel blend (B20) in the engine with and without coating. The results revealed that specific fuel consumption was decreased by 8.5% and the brake thermal efficiency was increased by 6.2% for biodiesel blend with coated engine compared with the base engine with neat diesel fuel. The exhaust emissions CO, NOx and HC emissions were also decreased for biodiesel blend with coated engine compared with base engine.  相似文献   

14.
Biodiesel has become one of the potential alternative sources to replace diesel. Some of the limitations of biodiesel include high NO x , poor atomization, poor oxidation stability, cold-flow problems, long-term storage problems, etc. Various strategies were discussed to overcome the limitations of biodiesels. Recent research is on effects of fuel additives or fuel composition modification to reformulate the fuel properties. This article is aimed at presenting the experimental investigation of the effects of isobutanol additive on the engine performance and emission characteristics of biodiesel blends derived from waste vegetable oils. The experimental investigation was conducted on a direct injection four-stroke diesel engine with different blends, B10, B20, B30, B10 (10% ISB), B20 (10% ISB), B30 (10% ISB), B10 (20% ISB), B20 (20% ISB) and B30 (20% ISB), and engine performance and emission characteristics are evaluated and discussed.  相似文献   

15.
ABSTRACT

The objective of this study is to investigate the effect of compression ratio on combustion characteristics of diesel engine with waste cooking oils methyl ester–diesel blends as fuel. The DI engine fuelled with Waste Cooking Rice Bran Methyl Ester (WCRBME) and Waste Cooking Cotton Seed Oil Methyl Ester (WCCSME) prepared by the transesterification process was investigated for its combustion and then compared with petroleum-based diesel fuel (PBDF). Experiments were conducted at a constant speed of 1500?rpm and maintained at a full-load condition for the compression ratio of 17:1, 18:1 and 19:1 and blending ratios B20, B40, B60 and B80.The fuel properties were strictly measured as per ASTM testing methods and these observed properties are verified to be well within the limits of ASTM D 6751 biodiesel standards. The combustion characteristics of heat release rate and combustion pressure of WCRBME & WCCSME were found closer to diesel.  相似文献   

16.
ABSTRACT

This work investigates the effect of adding Cerium oxide nanoparticles at different proportions (30, 60 and 90?ppm) to Calophyllum inophyllum methyl ester and diesel blends (20% CI methyl ester and 80% diesel) in a four-stroke single-cylinder diesel engine. Addition of nanoparticles is a strategy to reduce emission and to improve the performance of the biodiesel. Modified fuels are introduced into the engine by admitting exhaust gas recirculation (EGR) at a rate of 10% and 20% so as to reduce nitrogen oxide (NOX) emissions from biodiesel and diesel blends. Results revealed a significant reduction in emissions (CO, NOX, HC and Smoke) at a 10% EGR rate. However, brake thermal efficiency is reduced with an increase in brake-specific fuel consumption at higher EGR rates. Hence, it is observed that 10% EGR rate is an effective method to control the emission of biodiesel and diesel blends without compromising much on engine efficiency.  相似文献   

17.
The present work deals with an experimental evaluation of the existing diesel engine with a blend of methyl esters of palm stearin (PS) oil and petro-diesel under varying injection pressures and compression ratios (CRs). It was observed that the brake thermal efficiency of engine was high with PSME40 at an injection pressure of 210 bar and CR of 16.5 when compared to other fuel injection pressures of 190 and 230 bar. However, the engine performance was superior with CR 19 at the rated injection pressure of 190?bar. Higher peak pressures are observed with higher CR. The engine emissions in terms of hydrocarbons, carbon monoxide and smoke opacity were lower but the nitrogen oxides were found to be increased due to the better combustion. It is observed that CR and fuel injection pressure simultaneously played a vital role in the reduction of emissions. The study revealed that PS could be explored as a source for producing biodiesel effectively with environmental concerns.  相似文献   

18.
ABSTRACT

Biodiesel is proved to be a better substitute of conventional diesel. Economically good biosource is a needed one. In this study, freshwater algae (micro algae) are used for producing the biodiesel. The fuel properties of the biodiesel sample were tested and found within the limits. The B10 and B20 biodiesel blends with diesel are tested in a single cylinder CI engine. The blends show a better performance in CI engine and the values are closer to the conventional diesel. The important engine parameter compression ratio is also made to vary. At the three compression ratios, the biodiesel’s performance trend is quite comparable with diesel.  相似文献   

19.
ABSTRACT

The present study was aimed to produce biodiesel from soybean oil and to investigate its characteristics. Soybean oil-based bio diesel properties are observed and tested in the fuel testing laboratory with standard procedures. It is found that soybean oil-based biodiesel has similar properties as that of diesel fuel. An experimental set-up was used in the study to analyse the performance, combustion and emission of soybean oil biodiesel with respect to normal diesel by using different blends (B20, B40, B60, B80 and B100). It is observed that there is no difficulty found in running the engine, but the performance of the biodiesel blends quite deviated from normal diesel. The combustion characteristics of the tested blends were in agreement with normal diesel. The carbon emissions are much lower for soybean oil biodiesel blends than diesel.  相似文献   

20.
This study investigates the biodiesel from Deccan hemp oil and its blends for the purpose of fuelling diesel engine. The performance and emission characteristics of Deccan hemp biodiesel are estimated and compared with diesel fuel. The experimental investigations are carried out with different blends of Deccan hemp biodiesel. Results show that brake thermal efficiency is improved significantly by 4.15% with 50 BDH when compared with diesel fuel. The Deccan hemp biodiesel reduces NOx, HC and CO emission along with a marginal increase in CO2 and smoke emissions with an increase in the biodiesel proportion in the diesel fuel. The improvement in heat release rates shows an increase in the combustion rate with different percentage blends of Deccan hemp biodiesel. From the engine test results, it has been established that 30–50 BDH of Deccan hemp biodiesel can be substituted for diesel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号