首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this present work, the impact of blending n-Pentanol, a next-generation bio fuel with cashew nut shell liquid (CNSL) biodiesel, on the performance of a diesel engine is examined. Tests were performed on a constant-speed compression-ignition engine using n-Pentanol/CNSL biodiesel blends. n-Pentanol was added to CNSL biodiesel by 5% and 10% by volume. Performance parameters such as break thermal efficiency (BTE), Brake-specific fuel consumption and Exhaust gas temperature (EGT) were analysed in this work. It was experimentally found that by adding n-Pentanol to neat CNSL biodiesel, significant reduction in viscosity was observed. In addition, BTE was increased by 0.8% due to improved atomisation of the blends. Further, brake-specific fuel and EGT were further reduced due to lower viscosity and improved combustion rate with addition of n-Pentanol to CNSL biodiesel. Emission parameters such as Hydro carbon (HC), Carbon monoxide, Nitrogen oxides (NOx) and Smoke emissions were examined at different load conditions. Addition of n-Pentanol as additive improves the rate of combustion, mixing and vaporisation of the blends with air and reduces the emissions associated with it. Components were observed during the trail.  相似文献   

2.
Euro V diesel fuel, pure biodiesel and biodiesel blended with 5%, 10% and 15% of ethanol or methanol were tested on a 4-cylinder naturally-aspirated direct-injection diesel engine. Experiments were conducted under five engine loads at a steady speed of 1800 r/min. The study aims to investigate the effects of the blended fuels on reducing NOx and particulate. On the whole, compared with Euro V diesel fuel, the blended fuels could lead to reduction of both NOx and PM of a diesel engine, with the biodiesel-methanol blends being more effective than the biodiesel-ethanol blends. The effectiveness of NOx and particulate reductions is more effective with increase of alcohol in the blends. With high percentage of alcohol in the blends, the HC, CO emissions could increase and the brake thermal efficiency might be slightly reduced but the use of 5% blends could reduce the HC and CO emissions as well. With the diesel oxidation catalyst (DOC), the HC, CO and particulate emissions can be further reduced.  相似文献   

3.
ABSTRACT

Dimethyl carbonate (DMC), a cetane improver, is used as a fuel additive to investigate the exhaust emission in diesel engine. Neem oil biodiesel (B100), neem oil biodiesel + dimethyl carbonate (B100+DMC) and diesel were used as test fuels. DMC is added 0.5% by volume to biodiesel. This research work was executed in a four-stroke, single-cylinder diesel engine. Owing to the percentage of DMC in biodiesel, carbon monoxide (CO) and hydrocarbon (HC) emissions were dropped corresponding to diesel. A considerable amount of nitrogen oxide (NOx) is decreased when diesel is used, and by the addition of B100+DMC, NOx were slightly reduced compared to B100.  相似文献   

4.
This study investigates the biodiesel from Deccan hemp oil and its blends for the purpose of fuelling diesel engine. The performance and emission characteristics of Deccan hemp biodiesel are estimated and compared with diesel fuel. The experimental investigations are carried out with different blends of Deccan hemp biodiesel. Results show that brake thermal efficiency is improved significantly by 4.15% with 50 BDH when compared with diesel fuel. The Deccan hemp biodiesel reduces NOx, HC and CO emission along with a marginal increase in CO2 and smoke emissions with an increase in the biodiesel proportion in the diesel fuel. The improvement in heat release rates shows an increase in the combustion rate with different percentage blends of Deccan hemp biodiesel. From the engine test results, it has been established that 30–50 BDH of Deccan hemp biodiesel can be substituted for diesel.  相似文献   

5.
ABSTRACT

The use of lower alcohol (such as methanol and ethanol) blends in diesel engines shows problems like phase separation, miscibility, higher NOx emissions etc. The addition of higher alcohols with either diesel or biodiesel is relatively new and only a little information is available on the effects of higher alcohols. In this work, the engine performance and emissions characteristics were compared between the lower and higher alcohol blended with biodiesel. Conventional diesel and biodiesel are considered as the reference fuels. Three lower alcohols (methanol, ethanol and propanol) and three higher alcohols (butanol, pentanol and octanol) of each 50% by volume were mixed with biodiesel of 50% by volume. Experiments were conducted on a single cylinder compression ignition diesel engine by varying the load conditions at a constant speed. Engine performance and emissions of CO, CO2, NOx and HC were determined. The results are discussed.  相似文献   

6.
ABSTRACT

The present investigation explores the effect of dairy scum oil methyl ester (DSOME) blends and ethanol additive on TV1 Kirloskar diesel engine performance, combustion and emission characteristics. From the experimental study, it is concluded that DSOME-B20 (20% dairy scum biodiesel?+?80% diesel) has shown appreciable performance and lower HC and CO emissions among all other blends. Hence DSOME-B20 is optimised as best fuel blend and it is carried for further investigations to study the effect of bio-ethanol additive on diesel engine performance. From the study it apparent that diesel engine operated with ethanol additive and 20% dairy scum biodiesel blended fuels shown the satisfactorily improved emission characteristics when compared to petroleum diesel fuel operation. Finally, from the experimental investigation, it concludes that addition of ethanol shown the slightly higher HC, CO emission and improved BTE, BSFC, NOx and CO2 than sole B20 biodiesel blend. Among all three (3%, 6% and 9%) ethanol additive ratios, E6% (6%-ethanol with B20) ethanol additive exhibits slightly better BTE, BSFC, cylinder pressure and heat release rate hence 6% ethanol additive with B20 biodiesel blend would furnish beneficial effects in the diesel engine.  相似文献   

7.
ABSTRACT

Injection timing (IT) is a vital factor among different injection parameters which governs the emissions and performance factors of the engine. This work portrays the effect of IT on cerium oxide nanoparticle doped Waste Cooking Palm Oil biodiesel and diesel blends. The doping is made at 30, 60 and 90?ppm. The modified fuels are introduced in reducing IT of 19°, 21° and 23°bTDC. 1500?rpm engine is made use in this study. Results revealed a significant reduction in emissions (CO, NOX, HC and Smoke) at IT?=?23°bTDC. Furthermore, performance (BSFC, BTE) is improved for fuel blends at IT?=?23°bTDC.  相似文献   

8.
In the present investigation, the effect of thermal barrier coated piston on the performance and emission characteristics of mahua-biodiesel-fuelled diesel engine was studied and compared with those of neat diesel fuel. The piston, cylinder walls and the valves of the engine were coated with 0.25?mm thickness of Al2O3 material without affecting the compression ratio of the engine. Experiments were conducted using diesel and biodiesel blend (B20) in the engine with and without coating. The results revealed that specific fuel consumption was decreased by 8.5% and the brake thermal efficiency was increased by 6.2% for biodiesel blend with coated engine compared with the base engine with neat diesel fuel. The exhaust emissions CO, NOx and HC emissions were also decreased for biodiesel blend with coated engine compared with base engine.  相似文献   

9.
In this experiment, the performance, emission, and combustion characteristics of a diesel engine were tested using bio-fuel (Anise oil) at different loads. The main focus of this study was to compare the existing biodiesel blends with the proposed mixture (anise?+?cerium oxide) of biodiesel blends in terms of engine parameters, cost, efficiency, and pollution control. The blends used in this experiment are B10 (Biodiesel-10%), B20 (Biodiesel-20%), and B30 (Biodiesel-30%). The emission and performance parameters considered for the test are SFC (specific fuel consumption), CO (carbon monoxide), NOX (nitrogen oxide), and HC (hydrocarbon). These parameters were tested for different load conditions such as 0%, 25%, 50%, 75%, and 100%. From the results, it shows that SFC is lower for B20 blend compared to that of pure diesel fuel, while B10, B30, B40, and B50 blends have slightly higher values. From the experiment, it is found that emissions of the HC and NOx were reduced and CO emission is slightly higher than the pure diesel.  相似文献   

10.
ABSTRACT

This work investigates the effect of adding Cerium oxide nanoparticles at different proportions (30, 60 and 90?ppm) to Calophyllum inophyllum methyl ester and diesel blends (20% CI methyl ester and 80% diesel) in a four-stroke single-cylinder diesel engine. Addition of nanoparticles is a strategy to reduce emission and to improve the performance of the biodiesel. Modified fuels are introduced into the engine by admitting exhaust gas recirculation (EGR) at a rate of 10% and 20% so as to reduce nitrogen oxide (NOX) emissions from biodiesel and diesel blends. Results revealed a significant reduction in emissions (CO, NOX, HC and Smoke) at a 10% EGR rate. However, brake thermal efficiency is reduced with an increase in brake-specific fuel consumption at higher EGR rates. Hence, it is observed that 10% EGR rate is an effective method to control the emission of biodiesel and diesel blends without compromising much on engine efficiency.  相似文献   

11.
ABSTRACT

The aim of present study is to optimise the performance and emission characteristics of compression ignition engine fuelled with biodiesel blended diesel fuel using response surface methodology (RSM). During engine trials, two parameters, viz. blend ratio and load torque, were varied and the responses like brake thermal efficiency (BTE), brake-specific fuel consumption (BSFC), carbon monoxide (CO), hydrocarbon (HC), nitrogen oxides (NOx) and smoke opacity were investigated. Statistical tool like RSM was used to design experiments. Optimisation of parameters was performed using the desirability approach of RSM for superior performance and lower emission. The results revealed that at optimal input parameters (40% fuel blend and 15?Nm load torque), the values of performance and emission parameters in optimal solutions: BSFC (kg/kWh): 0.2252, BTE (%): 29.2885, CO (vol. %): 0.00757, HC (ppm): 5.7195, NOx (ppm): 319.78, smoke (vol. %): 4.50 were found for the Mahua oil methyl esters blended with diesel.  相似文献   

12.
This paper presents the regulated emissions profile of a Euro 4 compliant common rail passenger car, fuelled with low concentration biodiesel blends. Four biodiesels of different origin and quality blended with a typical automotive diesel fuel at proportions of 10, 20, and 30% v/v. Emission and fuel consumption measurements were conducted on a chassis dynamometer with constant volume sampling (CVS) technique, over the New European Driving Cycle (NEDC) and the real traffic-based Artemis driving cycles. Limited effects were observed on CO2 emissions, while fuel consumption marginally increased with biodiesel. PM, HC and CO emissions improved with the addition of biodiesel, with some exceptions. Some increases with biodiesel were observed over the NEDC, as a consequence of biodiesel characteristics and engine conditions. NOx emissions were increased with the use of biodiesel blends and positively correlated with fuel unsaturation levels.  相似文献   

13.
An experimental investigation of diesel engine using cottonseed oil biodiesel and its blends with exhaust gas recirculation (EGR) techniques has been carried out. An optimum nozzle opening pressure of 250 bar and lower static injection timing of 20° before top dead centre (bTDC) are considered because it has been observed that these conditions only give minimum emissions. From the test results, it could be noted that there is an increasing trend of emission characteristics of HC, smoke density and NOx for both cold and hot EGR for all blends of fuel with respect to brake power. As compared with cold EGR, the hot EGR gives lower emissions at all loads. In hot EGR, among the blends, at no-load and full-load conditions, the B100 gives the highest reduction in NOx of 14.23% and 7.91%, respectively. However, the use of EGR leads to a rise in soot emission because of soot–NOx trade-off for both the cases.  相似文献   

14.
ABSTRACT

The use of biodiesel in diesel engines leads to the reduction of tail pipe emissions; But, several researchers portray that the use of biodiesel produces more NOx pollution than diesel-fuelled engines, which is an hindrance for the scope of biodiesel usage. In this work, an experimental investigation of the combined effect of antioxidant additive added in the fuel as a fuel modification technique and SCR (selective catalytic reduction) as after a treatment technique on NO x reduction in a neem biodiesel-powered compression ignition engine has been conducted. Results show that the antioxidant additive combined with the SCR technique reduces the NO x emission significantly by 82% and there was a slight increase in UBHC and CO emission due to the addition of oxidation-suppressing additives with neem biodiesel and aqueous urea solution injection at the exhaust without a major drop in BTE and fuel consumption.  相似文献   

15.
ABSTRACT

In recent years, biodiesel has become more attractive as an alternative fuel for diesel engines because of its environmental benefits and the fact is that it is made from renewable resources. The role of biodiesel is not to replace petroleum diesel, biofuels help to improve the economical growth and positive impacts on the environment. The main purpose of this research is to reduce the emission such as carbon monoxide (CO), nitrogen oxides (NOX), hydrocarbons (HC) and carbon dioxide (CO2). And to increase the performance characteristics such as break thermal efficiency (BTE), specific fuel consumption (SFC) of diesel engines. Here we used dual biofuel (lemongrass oil plus mint oil) blended with diesel and cerium oxide is added as an additive and undergone the test of engine performance and emission parameters of diesel. The measuring parameters are BTHE, specific fuel conception, CO2, CO, NOx and HC.  相似文献   

16.
The role of nanoparticles and nanofluid additives for biodiesel has gained consistent position in the current trend as they contribute to increase the performance of the engine with lower emission. In addition, additives also help to increase the engine reliability and lifespan. In this work, the effects of canola biodiesel blends of 20% proportions with diesel were investigated at 100% of engine load. The fuel is tested in a multi-cylinder water-cooled direct ignition (DI) engine. There are numerous notable works on nanofluid; however, the addition of TiO2 nanoparticle as additive to produce canola biodiesel fuel is very limited. With the addition of the TiO2 nanoparticle on Canola biodiesel blend in the DI engine, the exhaust property of gases such as CO, HC and NOX is reduced. Furthermore, the combustion characteristics of the engine are improved. The canola biodiesel blends also resulted in lower NOx emission as well as low smoke.  相似文献   

17.
The objective of this investigation was to find the effect of ethanol–gasoline blends as fuel on the performance and exhaust emission of a spark ignition (SI) engine. A four-stroke three-cylinder SI engine was used for this study. Performance tests were conducted for the three blends E5 (5% ethanol), E10 (10% ethanol) and E15 (15% of ethanol) as well as E0(100% gasoline) to evaluate their brake thermal efficiency, specific fuel consumption and mechanical efficiency, while exhaust emissions were also analysed for carbon monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2) and oxides of nitrogen (NOx) with varying torque conditions and constant speed of the engine. The results showed that blends of gasoline and ethanol increased the brake power, brake thermal efficiency and the fuel consumption. The CO and HC emissions concentration in the engine exhaust decreased while the NOx concentration increased.  相似文献   

18.
In this study, the regulated and unregulated emissions profile and fuel consumption of an automotive diesel and biodiesel blends, prepared from two different biodiesels, were investigated. The biodiesels were a rapeseed methyl ester (RME) and a palm-based methyl ester (PME). The tests were performed on a chassis dynamometer with constant volume sampling (CVS) over the New European Driving Cycle (NEDC) and the non-legislated Athens Driving Cycle (ADC), using a Euro 2 compliant passenger vehicle. The objectives were to evaluate the impact of biodiesel chemical structure on the emissions, as well as the influence of the applied driving cycle on the formation of exhaust emissions and fuel consumption. The results showed that NOx emissions were influenced by certain biodiesel properties, such as those of cetane number and iodine number. NOx emissions followed a decreasing trend over both cycles, where the most beneficial reduction was obtained with the application of the more saturated biodiesel. PM emissions were decreased with the palm-based biodiesel blends over both cycles, with the exception of the 20% blend which was higher compared to diesel fuel. PME blends led to increases in PM emissions over the ADC. The majority of the biodiesel blends showed a tendency for lower CO and HC emissions. The differences in CO2 emissions were not statistically significant. Fuel consumption presented an increase with both biodiesels. Total PAH and nitro-PAH emission levels were decreased with the use of biodiesel independently of the source material. Lower molecular weight PAHs were predominant in both gaseous and particulate phases. Both biodiesels had a negative impact on certain carbonyl emissions. Formaldehyde and acetaldehyde were the dominant aldehydes emitted from both fuels.  相似文献   

19.
Nano-additives can be added to biodiesel blends to improve its performance through better fuel properties. The present study investigated the effects of Al2O3 nano-additives on B20 blends of pongamia and jatropha biodiesel in a vertical single cylinder direct injection compression ignition engine. The fuel properties have been determined for all fuel samples with and without additives addition. The engine study was conducted to analyse the performance and emission characteristics of the blends with and without the additives at varying loads. The emissions from the biodiesel blends were comparatively lesser than that of normal diesel. B20 blend of pongamia biodiesel with additive has shown better performance. Additive-added biodiesel blends show a significant reduction in NOx emission.  相似文献   

20.
The current state of future energy and environmental crises has revitalised the need to find alternative sources of energy due to escalating oil prices and depleting oil reserves. To meet increasing energy requirements, there has been a growing interest in alternative fuels like biodiesel that can become a suitable diesel fuel substitute for compression ignition engine. Biodiesel offers a very promising alternative to diesel fuel, since they are renewable and have similar properties. Calophyllum inophyllum seed oil collected from different restaurants in the Nagapattinam region of South India was converted into methyl esters (biodiesel) by transesterification. Biodiesel produced from C. inophyllum oil was blended with diesel by different volume proportions (25%, 50%, and 75%). Biodiesel and its blends were tested on a direct injection (DI) diesel engine at a constant speed by varying loads from 0% to 100% in steps of 20% to analyse its performance, emission, and combustion characteristics. The results obtained were compared with that of diesel fuel. B25 (27.5%) showed better performance than diesel fuel (26.28%) at full load and B50 showed performances similar to diesel fuel. Smoke density of B25 was slightly (2.6%) higher than that of diesel at full load conditions. At full load, measured carbon monoxide emissions for B25 and B50 were 4% lower than that of diesel. Hydrocarbon emissions for B25 and B100 were 5.37% and 25.8% higher than that of diesel, respectively. Nitrogen oxides (NOx) emission was lower for all biodiesel blends. NOx emissions of B100 and B75 were lower than that of diesel by 22.16% and 13.29% at full load, respectively. Combustion profile was smoother, and no knocking problem was observed while operating with biodiesel blends. B75 produced peak cylinder pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号