首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although they correspond to an important fraction of the total area of mountain glaciers (33,000 km2 out of 546,000 km2), Himalayan glaciers and their mass balance are poorly sampled. For example, between 1977 and 1999, the average area surveyed each year on the field was 6.8 km2 only. No direct mass balance measurement is available after 1999. To contribute to fill this gap, we use remote sensing data to monitor glacier elevation changes and mass balances in the Spiti/Lahaul region (32.2°N, 77.6°E, Himachal Pradesh, Western Himalaya, India). Our measurements are obtained by comparing a 2004 digital elevation model (DEM) to the 2000 SRTM (Shuttle Radar Topographic Mission) topography.The 2004 DEM is derived from two SPOT5 satellite optical images without any ground control points. This is achieved thanks to the good on-board geolocation of SPOT5 scenes and using SRTM elevations as a reference on the ice free zones. Before comparison on glaciers, the two DEMs are analyzed on the stable areas surrounding the glaciers where no elevation change is expected. Two different biases are detected. A long wavelength bias affects the SPOT5 DEM and is correlated to an anomaly in the roll of the SPOT5 satellite. A bias is also observed as a function of altitude and is attributed to the SRTM dataset. Both biases are modeled and removed to permit unbiased comparison of the two DEM on the 915 km2 ice-covered area digitized from an ASTER image.On most glaciers, a clear thinning is measured at low elevations, even on debris-covered tongues. Between 1999 and 2004, we obtain an overall specific mass balance of − 0.7 to − 0.85 m/a (water equivalent) depending on the density we use for the lost (or gained) material in the accumulation zone. This rate of ice loss is twice higher than the long-term (1977 to 1999) mass balance record for Himalaya indicating an increase in the pace of glacier wastage. To assess whether these ice losses are size-dependant, all glaciers were classified into three samples according to their areal extent. All three samples show ice loss, the loss being higher for glaciers larger than 30 km2. In the case of the benchmark Chhota Shigri glacier, a good agreement is found between our satellite observations and the mass balances measured on the field during hydrological years 2002-2003 and 2003-2004. Future studies using a similar methodology could determine whether similar ice losses have occurred in other parts of the Himalaya and may allow evaluation of the contribution of this mountain range to ongoing sea level rise.  相似文献   

2.
In 2007, a spanning tree-based genetic algorithm approach for solving nonlinear fixed charge transportation problem proposed by Jo et al. [Jo, J. B., Li, Y., Gen, M. (2007). Nonlinear fixed charge transportation problem by spanning tree-based genetic algorithm. Computers & Industrial Engineering. doi:10.1016/j.cie.2007.06.022] was published in Computers & Industrial Engineering journal. In 2008, comments like calculation of total cost, indication of problem size were given by Kannan et al. [Kannan, G., Kumar, P. S., Vinay V. P. (2008). Comments on ‘‘Nonlinear fixed charge transportation problem by spanning tree-based genetic algorithm” by Jung-Bok Jo, Yinzhen Li, Mitsuo Gen, Computers & Industrial Engineering (2007). Computers & Industrial Engineering. doi:10.1016/j.cie.2007.12.019] for the published model of [Jo, J. B., Li, Y., Gen, M. (2007). Nonlinear fixed charge transportation problem by spanning tree-based genetic algorithm. Computers & Industrial Engineering.doi:10.1016/j.cie.2007.06.022]. In this note, as a response to the comments of Kannan et al., the formula for calculating the total cost of nonlinear fixed charge transportation problem is illustrated with examples, to which the near-optimal solutions are given.  相似文献   

3.
Abstract

Owing 10 the advent of the Thematic Mapper with higher resolution, it has now become much easier to map various natural resources efficiently and accurately in a shorter period of time. In the work described in this paper an attempt has been made to prepare various soil and land resources maps by visual interpretation of a false colour composite from the Thematic Mapper at the average scale of 1:250 000 in conjunction with field checks covering an area of 340000 ha in the Malwa Plateau. The soil map was prepared in association with subgroup level and a total of nine soil mapping untits were established. Four physiographic units, seven land-use units and three waste-land mapping units were found to occur in the area during preparation of the respective map.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号