首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
Cellular manufacturing system (CMS) is one of the group technology (GT) usages. Among the necessary decisions for a successful CMS implementation, cell formation problem (CFP) and cell layout problem (CLP) are two most popular ones. The majority of past studies in CMS discussed on CFPs and some of those focused on CLP ones. A few researchers solve the CPF and CLP simultaneously. In this paper, we present a new integrated mathematical model considering cell formation and cell layout simultaneously. The goal of our model is to group similar parts and corresponding different machines in same cells. Machines sequence in each cell and cell positions is also specified in the system. Moreover, our proposed model considers forward and backtracking movements as well as new assumptions for distances between cells using sequence data and production volume. One appropriate adjusted measure from the literature and two new measures of performance for evaluating solutions are defined. To validate the model, two well-known critical benchmark examples are employed. Computational experiments demonstrate that our proposal is a proficient model and show the effectiveness of our implementation.  相似文献   

2.
This paper deals with the cellular manufacturing system (CMS) that is based on group technology (GT) concepts. CMS is defined as identifying the similar parts that are processed on the same machines and then grouping them as a cell. The most proposed models for solving CMS problems are focused on cell formation and intracellular machine layout problem while cell layout is considered in few papers. In this paper we apply the multiple attribute decision making (MADM) concept and propose a two-stage method that leads to determine cell formation, intracellular machine layout and cell layout as three basic steps in the design of CMS. In this method, an initial solution is obtained from technique for order preference by similarity to the ideal solution (TOPSIS) and then this solution is improved. The results of the proposed method are compared with well-known approaches that are introduced in literature. These comparisons show that the proposed method offers good solutions for the CMS problem. The computational results are also reported.  相似文献   

3.
Two-stage approach for machine-part grouping and cell layout problems   总被引:3,自引:1,他引:3  
Cellular manufacturing system (CMS) which is based on the concept of group technology (GT) has been recognized as an efficient and effective way to improve the productivity in a factory. In recent years, there have been continuous research efforts to study different facet of CMS. Most of them concentrated on distinguishing the part families and machine cells either simultaneously or individually with the objective of minimizing intercellular and intracellular part movements. This is known as machine-part grouping problem (MPGP) which is a crucial process while designing CMS. Nevertheless, in reality some components may not be finished within only one cell, they have to travel to another cell(s) for further operation(s). Under this circumstance, intercellular part movement will occur. Different order/sequence of machine cells allocation may result in different total intercellular movement distance unit. It should be noted that if the production volume of each part is very large, then the total number of intercellular movement will be further larger. Therefore, the sequence of machine cells is particularly important in this aspect. With this consideration, the main aim of this work is to propose two-stage approach for solving cell formation problem as well as cell layout problem. The first stage is to identify machine cells and part families, which is the essential part of MPGP. The work in second stage is to carry out a macro-approach to study the cell formation problem with consideration of machining sequence. The impact of the sequencing for allocating the machine cells on minimizing intercellular movement distance unit will be investigated in this stage. The problem scope, which is a MPGP together with the background of cell layout problem (CLP), has been identified. Two mathematical models are formulated for MPGP and CLP respectively. The primary assumption of CLP is that it is a linear layout. The CLP is considered as a quadratic assignment problem (QAP). As MPGP and QAP are NP-hard, genetic algorithm (GA) is employed as solving algorithm. GA is a popular heuristic search technique and has proved superior performance on complex optimization problem. In addition, an industrial case study of a steel member production company has been employed to evaluate the proposed MPGP and CLP models, and the computational results are presented.  相似文献   

4.
A cellular manufacturing system (CMS) is considered an efficient production strategy for batch type production. A CMS relies on the principle of grouping machines into machine cells and grouping parts into part families on the basis of pertinent similarity measures. The bacteria foraging algorithm (BFA) is a newly developed computation technique extracted from the social foraging behavior of Escherichia coli (E. coli) bacteria. Ever since Kevin M. Passino invented the BFA, one of the main challenges has been employment of the algorithm to problem areas other than those for which the algorithm was proposed. This research work studies the first applications of this emerging novel optimization algorithm to the cell formation (CF) problem considering the operation sequence. In addition, a newly developed BFA-based optimization algorithm for CF based on operation sequences is discussed. In this paper, an attempt is made to solve the CF problem, while taking into consideration the number of voids in the cells and the number of inter-cell travels based on operational sequences of the parts visited by the machines. The BFA is suggested to create machine cells and part families. The performance of the proposed algorithm is compared with that of a number of algorithms that are most commonly used and reported in the corresponding scientific literature, such as the CASE clustering algorithm for sequence data, the ACCORD bicriterion clustering algorithm and modified ART1, and using a defined performance measure known as group technology efficiency and bond efficiency. The results show better performance of the proposed algorithm.  相似文献   

5.
This paper presents a novel mixed-integer non-linear programming model for the layout design of a dynamic cellular manufacturing system (DCMS). In a dynamic environment, the product mix and part demands are varying during a multi-period planning horizon. As a result, the best cell configuration for one period may not be efficient for successive periods, and thus it necessitates reconfigurations. Three major and interrelated decisions are involved in the design of a CMS; namely cell formation (CF), group layout (GL) and group scheduling (GS). A novel aspect of this model is concurrently making the CF and GL decisions in a dynamic environment. The proposed model integrating the CF and GL decisions can be used by researchers and practitioners to design GL in practical and dynamic cell formation problems. Another compromising aspect of this model is the utilization of multi-rows layout to locate machines in the cells configured with flexible shapes. Such a DCMS model with an extensive coverage of important manufacturing features has not been proposed before and incorporates several design features including alternate process routings, operation sequence, processing time, production volume of parts, purchasing machine, duplicate machines, machine capacity, lot splitting, intra-cell layout, inter-cell layout, multi-rows layout of equal area facilities and flexible reconfiguration. The objective of the integrated model is to minimize the total costs of intra and inter-cell material handling, machine relocation, purchasing new machines, machine overhead and machine processing. Linearization procedures are used to transform the presented non-linear programming model into a linearized formulation. Two numerical examples taken from the literature are solved by the Lingo software using a branch-and-bound method to illustrate the performance of this model. An efficient simulated annealing (SA) algorithm with elaborately designed solution representation and neighborhood generation is extended to solve the proposed model because of its NP-hardness. It is then tested using several problems with different sizes and settings to verify the computational efficiency of the developed algorithm in comparison with the Lingo software. The obtained results show that the proposed SA is able to find the near-optimal solutions in computational time, approximately 100 times less than Lingo. Also, the computational results show that the proposed model to some extent overcomes common disadvantages in the existing dynamic cell formation models that have not yet considered layout problems.  相似文献   

6.
Cell formation is an important problem in the design of a cellular manufacturing system. Most of the cell formation methods in the literature assume that each part has a single process plan. However, there may be many alternative process plans for making a specific part, specially when the part is complex. Considering part multiple process routings in the formation of machine-part families in addition to other production data is more realistic and can produce more independent manufacturing cells with less intercellular moves between them. A new comprehensive similarity coefficient that incorporates multiple process routings in addition to operations sequence, production volumes, duplicate machines, and machines capacity is developed. Also, a clustering algorithm for machine cell formation is proposed. The algorithm uses the developed similarity coefficient to calculate the similarity between machine groups. The developed similarity coefficient showed more sensitivity to the intercellular moves and produced better machine grouping.  相似文献   

7.
Cellular manufacturing systems (CMS) are used to improve production flexibility and efficiency. They involve the identification of part families and machine cells so that intercellular movement is minimized and the utilization of the machines within a cell is maximized. Previous research has focused mainly on cell formation problems and their variants; however, only few articles have focused on more practical and complicated problems that simultaneously consider the three critical issues in the CMS-design process, i.e., cell formation, cell layout, and intracellular machine sequence. In this study, a two-stage mathematical programming model is formulated to integrate the three critical issues with the consideration of alternative process routings, operation sequences, and production volume. Next, because of the combinatorial nature of the above model, an efficient tabu search algorithm based on a generalized similarity coefficient is proposed. Computational results from test problems show that our proposed model and solution approach are both effective and efficient. When compared to the mathematical programming approach, which takes more than 112 h (LINGO) and 1139 s (CPLEX) to solve a set of ten test instances, the proposed algorithm can produce optimal solutions for the same set of test instances in less than 12 s.  相似文献   

8.
The cellular manufacturing system (CMS) is considered as an efficient production strategy for batch type production. The CMS relies on the principle of grouping machines into machine cells and grouping machine parts into part families on the basis of pertinent similarity measures. The bacteria foraging optimization (BFO) algorithm is a modern evolutionary computation technique derived from the social foraging behavior of Escherichia coli bacteria. Ever since Kevin M. Passino invented the BFO, one of the main challenges has been the employment of the algorithm to problem areas other than those of which the algorithm was proposed. This paper investigates the first applications of this emerging novel optimization algorithm to the cell formation (CF) problem. In addition, for this purpose matrix-based bacteria foraging optimization algorithm traced constraints handling (MBATCH) is developed. In this paper, an attempt is made to solve the cell formation problem while considering cell load variations and a number of exceptional elements. The BFO algorithm is used to create machine cells and part families. The performance of the proposed algorithm is compared with a number of algorithms that are most commonly used and reported in the corresponding scientific literature such as K-means clustering, the C-link clustering and genetic algorithm using a well-known performance measure that combined cell load variations and a number of exceptional elements. The results lie in favor of better performance of the proposed algorithm.  相似文献   

9.
Flexible manufacturing systems are very complex to control and it is difficult to generate controlling systems for this problem domain. Flexible job-shop scheduling problem (FJSP) is one of the instances in this domain. It is a problem which inherits the job-shop scheduling problem (JSP) characteristics. FJSP has additional routing sub-problem in addition to JSP. In routing sub-problem each operation is assigned to a machine out of a set of capable machines. In scheduling sub-problem the sequence of assigned operations is obtained while optimizing the objective function(s). In this paper an object-oriented (OO) approach is presented for multi-objective FJSP along with simulated annealing optimization algorithm. Solution approaches in the literature generally use two-string encoding scheme to represent this problem. However, OO analysis, design and programming methodology help to present this problem on a single encoding scheme effectively which result in a practical integration of the problem solution to manufacturing control systems where OO paradigm is frequently used. OO design of FJSP is achieved by using UML class diagram and this design reduces the problem encoding to a single data structure where operation object of FJSP could hold its data about alternative machines in its own data structure hierarchically. Many-to-many associations between operations and machines are transformed into two one-to-many associations by inserting a new class between them. Minimization of the following three objective functions are considered in this paper: maximum completion time, workload of the most loaded machine and total workload of all machines. Some benchmark sets are run in order to show the effectiveness of the proposed approach. It is proved that using OO approach for multi-objective FJSP contributes to not only building effective manufacturing control systems but also achieving effective solutions.  相似文献   

10.
Cellular manufacturing (CM) is an approach that includes both flexibility of job shops and high production rate of flow lines. Although CM provides many benefits in reducing throughput times, setup times, work-in-process inventories but the design of CM is complex and NP complete problem. The cell formation problem based on operation sequence (ordinal data) is rarely reported in the literature. The objective of the present paper is to propose a visual clustering approach for machine-part cell formation using self organizing map (SOM) algorithm an unsupervised neural network to achieve better group technology efficiency measure of cell formation as well as measure of SOM quality. The work also has established the criteria of choosing an optimum SOM size based on results of quantization error, topography error, and average distortion measure during SOM training which have generated the best clustering and preservation of topology. To evaluate the performance of the proposed algorithm, we tested the several benchmark problems available in the literature. The results show that the proposed approach not only generates the best and accurate solution as any of the results reported, so far, in literature but also, in some instances the results produced are even better than the previously reported results. The effectiveness of the proposed approach is also statistically verified.  相似文献   

11.
The cellular manufacturing system (CMS) is considered as an efficient production strategy for batch type production. The CMS relies on the principle of grouping machines into machine cells and grouping machine parts into part families based on pertinent similarity measures. The bacteria foraging algorithm (BFA) is a new in development computation technique extracted from the social foraging behavior of Escherichia coli (E. coli) bacteria. Ever since Kevin M. Passino invented the BFA, one of the main challenges has been employment of the algorithm to problem areas other than those for which the algorithm was proposed. This research work inquires the first applications of this emerging novel optimization algorithm to the cell formation (CF) problem. In addition, a newly developed BFA-based optimization algorithm for CF is discussed. In this paper, an attempt is made to solve the cell formation problem meanwhile taking into consideration number of voids in cells and a number of exceptional elements based on operational time of the parts required for processing in the machines. The BFA is suggested to create machine cells and part families. The performance of the proposed algorithm is compared with a number of algorithms that are most commonly used and reported in the corresponding scientific literature such as similarity coefficients methods (SCM), rank order clustering (ROC), ZODIAC, GRAFICS, MST, GATSP, GP, K-harmonic clustering (KHM), K-means clustering, C-link clustering, modified ART1, GA (genetic algorithm), evolutionary algorithm (EA), and simulated annealing (SA) using defined performance measures known as modified grouping efficiency and grouping efficacy. The results lie in favor of better performance of the proposed algorithm.  相似文献   

12.
One of the problems encountered in the design of manufacturing systems is how to arrange the machines on the surface of the workshop, which is commonly referred to as a layout problem. Such a problem has been widely investigated in the literature. Most approaches use optimization technique to determine the position of each facility, assuming that the required data is available. Unfortunately, this assumption is often unrealistic, since the study design of a workshop is obviously conducted much before it is operating, so that data related to customer demands, for example, is generally not known with enough precision. Indeed, if good forecasts about what is to be produced in the next weeks can be available, they will obviously become more and more unreliable as the considered period of time will increase, so that layout found using classical approaches can turn out not to be relevant on the medium or long term. We propose an approach to design a robust layout in a context where the certainty of the information available decreases over time, which is usually the case for real applications. We propose a resolution approach based on a fuzzy evolutionary algorithm, which includes uncertain customer demands for each product. We show how this problem can be stated as a fuzzy dynamic layout problem with growing uncertainty over time. We suggest an evolutionary algorithm with adapted operators. Their performances are first tested using 2crisp layout problems already published. Then the impact of increasing uncertainty is studied using a suggested benchmark. The results of our experiments show the importance of considering the degradation of the information for designing robust layouts.  相似文献   

13.
制造系统中的单向环型设备布局设计   总被引:8,自引:0,他引:8  
提出一种优化建模与虚拟现实技术相结合的求解策略,较好地解决了制造系统中的单向环型设备布局问题.研究该问题的固有特性,提出三条定理,构建了一个启发式算法,并实现了一个沉浸式虚拟布局设计的例子.  相似文献   

14.
The design of cellular manufacturing systems involves many structural and operational issues. One of the important design steps is the formation of part families and machine cells (cell formation). Despite a large number of papers on cell formation published worldwide, only a handful incorporates operation sequence in layout design (intra-cell move calculations). We propose a solution to solve the part-family and machine-cell formation problem considering the within-cell layout problem, simultaneously. In this paper, the cellular manufacturing system is formulated as a multiple departures single destination multiple travelling salesman problem (MDmTSP) and a solution methodology based on simulated annealing is proposed to solve the formulated model. Numerical examples show that the proposed method is efficient and effective in finding optimal solutions. The results also indicate that the proposed approach performs well compared to some well-known cell formation methods.  相似文献   

15.
In this study, a non-linear mathematical model is proposed to solve the stochastic cellular manufacturing system (CMS) design problem. The problem is observed in both machine and labor-intensive cells, where operation times are probabilistic in addition to uncertain customer demand. We assume that processing times and customer demand are normally distributed. The objective is to design a CMS with product families that are formed with most similar products and minimum number of cells and machines for a specified risk level. Various experiments are carried out to study the impact of risk level on CMS design. As the risk level increases, lower number of cells and product families are formed and average cell utilization increases. However, this leads to poor performance in cells, where standard deviations of capacity requirements are high. Later, the deterministic approach proposed by Suer, Huang, and Sripathi (2010) and the proposed stochastic model with various risk levels are compared. Both of the models’ results are simulated with Arena Simulation Software. Simulation is performed to validate models and assess the performance of designed CMSs with respect to following measures: cell utilization, WIP, total waiting time and total number waiting. Stochastic CMS design with 10% risk formed a better CMS in all of the performance measures according to the results obtained from simulation experiments.  相似文献   

16.
This paper presents a mixed-integer programming model for a multi-floor layout design of cellular manufacturing systems (CMSs) in a dynamic environment. A novel aspect of this model is to concurrently determine the cell formation (CF) and group layout (GL) as the interrelated decisions involved in the design of a CMS in order to achieve an optimal (or near-optimal) design solution for a multi-floor factory in a multi-period planning horizon. Other design aspects are to design a multi-floor layout to form cells in different floors, a multi-rows layout of equal area facilities in each cell, flexible reconfigurations of cells during successive periods, distance-based material handling cost, and machine depot keeping idle machines. This model incorporates with an extensive coverage of important manufacturing features used in the design of CMSs. The objective is to minimize the total costs of intra-cell, inter-cell, and inter-floor material handling, purchasing machines, machine processing, machine overhead, and machine relocation. Two numerical examples are solved by the CPLEX software to verify the performance of the presented model and illustrate the model features. Since this model belongs to NP-hard class, an efficient genetic algorithm (GA) with a matrix-based chromosome structure is proposed to derive near-optimal solutions. To verify its computational efficiency in comparison to the CPLEX software, several test problems with different sizes and settings are implemented. The efficiency of the proposed GA in terms of the objective function value and computational time is proved by the obtained results.  相似文献   

17.
研究了单元制造系统(CMS)设计中单元间布局设计问题,从单元制造系统的实际出发,提出了一种基于割树(Slicing-tree)的单元间布局设计模型.该模型考虑了单元形状约束、单元I/O点位置优化等诸因素对布局结果的影响.针对基于割树的描述形式,采用遗传算法求解,提出了一种新的割树编码方案,克服了以往编码方案易产生非法子串、不能覆盖整个解空间以及实现困难等缺点.计算结果表明,该算法是有效的、可行的.  相似文献   

18.
In this paper, a design for robust facility layout is proposed under the dynamic demand environment. The general strategy for a multi period layout planning problem is adaptive approach. This approach for Dynamic Plant Layout Problem (DPLP) assumes that a layout will accommodate changes from time to time with low rearrangement and production interruption costs, and that the machines can be easily relocated. On the other hand the robust layout approach, assumes that rearrangement and production interruption costs are too high and hence, tries to minimize the total material handling costs in all periods using a single layout. Robust approach suggests a single layout for multiple scenarios as well as for multiple periods. As a solution procedure for the proposed model, a Simulated Annealing (SA) algorithm is suggested, which perform well for the problems from literature and QAPLIB website. The application of suggested model for robust layout to cellular layouts has given better results compared to the robust cellular layout model of literature. For the standard DPLP of the literature, the solution values of the suggested model are very near to the results of adaptive approach. The Total Penalty Cost (TPC) is used to test the suitability of the suggested layout to be a robust layout for the given data set. TPC values indicate that the suggested layout is suitable as robust layout for the given data sets.  相似文献   

19.
We present an efficient iterative heuristic procedure for solving the integrated layout design and product flow assignment problem. The layout design decisions involve planar location of unequal-area machines with duplicates. The product flows are assigned to machines according to the product processing routes. The integrated decision problem is a nonlinear mixed integer model which cannot be efficiently solved using classical methods for large problems. We propose a novel integrated heuristic procedure based on the alternating heuristic, a perturbation algorithm and sequential location heuristic. Since the alternating heuristic between facility layout design and product-machine assignment sub-problems terminates with local optima, we developed a perturbation algorithm based on assignment decisions. The results of an experimental study show that proposed procedure is both efficient and effective in identifying quality solutions for small to very large-sized problems.  相似文献   

20.
Ergonomics has been playing an important role in assembly system design (ASD) that contains not only the main assembly line balancing problem but also the subassembly line balancing and assembly layout problem. The ergonomics in ASD has an impact both on productivity and on workers’ health, especially when frequent changes in the product mix occur. In this study, we propose a systematic approach in order to handle ASD, which consists of three subproblems, while considering ergonomic risk factors. The first two subproblems are solved simultaneously using the proposed rule‐based constructive search algorithm, where ergonomic risks are evaluated by OCRA method. Later, layout problem is solved under transportation constraints using local search methods with various neighborhood structures. To provide the applicability and evaluate the performance of the proposed systematic approach, a real‐life case study in a harness manufacturing company is solved and prototype productions are performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号