首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the relationship between (irreversible) membrane permeabilization and loss of viability in Escherichia coli, Listeria monocytogenes and Saccharomyces cerevisiae cells subjected to high pressure carbon dioxide (HPCD) treatment at different process conditions including temperature (35–45 °C), pressure (10.5–21.0 MPa) and treatment time (0–60 min) was examined. Loss of membrane integrity was measured as increased uptake of the fluorescent dye propidium iodide (PI) with spectrofluorometry, while cell inactivation was determined by viable cell count. Uptake of PI by all three strains indicated that membrane damage is involved in the mechanism of HPCD inactivation of vegetative cells. The extent of membrane permeabilization and cellular death increased with the severity of the HPCD treatment. The resistance of the three tested organisms to HPCD treatment changed as a function of treatment time, leading to significant tailing in the survival curves, and was dependent on pressure and temperature. The results in this study also indicated a HPCD-induced damage on nucleic acids during cell inactivation. Transmission electron microscopy showed that HPCD treatment had a profound effect on the intracellular organization of the micro-organisms and influenced the permeability of the bacterial cells by introducing pores in the cell wall.  相似文献   

2.
Flow cytometry (FCM) and aerobic plate count (APC) by the culture method were performed on green tea samples spiked with Escherichia coli type strain NCTC9001 (ATCC11775) solutions of different concentrations. In FCM, fluorescence signals from multiple stained bacteria and other fluorophores are detected using detector channels, and recorded as events with a voltage at each channel. FCM data were analyzed in two ways: conventional and multivariate analysis. In the former, the number of events with voltages larger than the defined threshold values was regarded as the predicted APC. In the latter, voltage histograms of all channels were obtained and merged horizontally to serve as explanatory variables. Then a partial least squares regression (PLSR) model was built to predict APC from the histogram data. The coefficient of determination (R2) and the root mean square error (RMSE) between APC by the culture method and that predicted by conventional FCM were 0.916 and 1.08 cfu/ml2. The APC values predicted by the PLSR model and those measured were in good agreement with R2 of 0.982 and RMSE of 0.417 cfu/ml, which verified the potential of the proposed method for improving APC prediction accuracy by FCM.  相似文献   

3.
Lactobacillus acidophilus ATCC 43121 were microencapsulated with sodium alginate by dropping method. The effects of microencapsulation on the changes in survival rate of the L. acidophilus ATCC 43121 during exposure to artificial gastrointestinal and on the change in heat susceptibility of L. acidophilus ATCC 43121 during the heat treatment were studied. In addition, cholesterol assimilation and intestinal adhesion of non-encapsulated and encapsulated L. acidophilus ATCC 43121 were also investigated to explore the effect of microencapsulation on health beneficial effect of lactic acid bacteria. Non-encapsulated cells were completely destroyed when exposed to artificial gastric juice (AGJ) of pH 1.2 and 1.5, while the treatment declined the viable count of encapsulated samples only by 3 log. Encapsulated cells exhibited a significantly higher resistance to artificial intestinal juice (AIJ) and heat treatment than non-encapsulated samples. The assimilative reductions of cholesterol by non-encapsulated and encapsulated L. acidophilus ATCC 43121 were 35.98% and 32.84%, respectively. However, encapsulation did not significantly (P>0.05) affect the adherence of L. acidophilus ATCC 43121 onto the human intestinal epithelial cell lines HT-29. The microencapsulation effectively protected the microorganisms from heat and acid treatment in delivering the viable cells to intestine without any significant adverse effect on their functionalities.  相似文献   

4.
A laboratory-scale UV-C treatment device based on Dean vortex technology was tested for its potential to inactivate spoilage microorganisms in cloudy fruit juices. A log 5 and log 6 reduction could be achieved by inactivating Lactobacillus plantarum BFE 5092 and Escherichia coli DH5α in naturally cloudy apple juice at 1.9 and 7.7 kJ/L, respectively. A treatment with 9.6 kJ/L led to an approximately log 4 inactivation of Saccharomyces cerevisiae DSM 70478 and Alicyclobacillus acidoterrestris DSM 2498. The effects of possible influencing parameters such as optical density, turbidity and viscosity were analyzed with regard to the efficiency of the UV-C treatment. The optical density based on dissolved compounds appeared to be the most important factor which influenced the bacterial inactivation efficiency. Cell counts of L. plantarum BFE 5092 could be reduced in quarter-strength Ringer’s solution adjusted with dye from an initial level of approximately 1 × 108-1 × 101 cfu/mL at an optical density (254 nm) of 20 at 9.6 kJ/L. Only a log 1.5 reduction, however, could be achieved at an optical density (254 nm) of 140 using the same UV-C treatment. Furthermore, no noticeable effect on inactivation could be determined by varying the turbidity or the viscosity of the juices investigated. An increasing flow rate and the consequently higher Dean number clearly improved the efficacy of the UV-C treatment. Thus, the inactivation of L. plantarum BFE 5092 in blood orange juice could be enhanced by an approximately 2.5-log reduction by increasing the Dean number from 32 to 256 at 7.7 kJ/L. The UV-C treatment using Dean vortex technology was shown in this study to effectively inactivate microorganisms even in cloudy juices. The optical density value seemed to be the exclusive determining factor on the efficiency of the UV-C inactivation of microorganisms based on Dean vortex technology, while the effect of suspended solids was negligible as a result of the efficient mixing by Dean vortices.  相似文献   

5.
The consumption of fresh-cut fruit has substantially risen over the last few years, leading to an increase in the number of outbreaks associated with fruit. Moreover, consumers are currently demanding wholesome, fresh-like, safe foods without added chemicals. As a response, the aim of this study was to determine if the naturally occurring microorganisms on fruit are “competitive with” or “antagonistic to” potentially encountered pathogens. Of the 97 and 107 isolates tested by co-inoculation with Escherichia coli O157:H7, Salmonella and Listeria innocua on fresh-cut apple and peach, respectively, and stored at 20 °C, seven showed a strong antagonistic capacity (more than 1-log unit reduction). One of the isolates, CPA-7, achieved the best reduction values (from 2.8 to 5.9-log units) and was the only isolate able to inhibit E. coli O157:H7 at refrigeration temperatures on both fruits. Therefore, CPA-7 was selected for further assays. Dose-response assays showed that CPA-7 should be present in at least the same amount as the pathogen to adequately reduce the numbers of the pathogen. From the results obtained in in vitro assays, competition seemed to be CPA-7's mode of action against E. coli O157:H7. The CPA-7 strain was identified as Pseudomonas graminis. Thus, the results support the potential use of CPA-7 as a bioprotective agent against foodborne pathogens in minimally processed fruit.  相似文献   

6.
The present study was aimed to: (1) examine the effect of UV-C irradiation at different doses on the surface color of fresh-cut-apple discs stored in refrigeration for 7 days; (2) explore the use of some pretreatments (hot water blanching, dipping into a solution containing ascorbic acid and calcium chloride) to minimize browning of UV-C irradiated apple slices, (3) investigate the effect of UV-C light at different doses (with or without anti-browning pretreatment) on survival of some inoculated microorganisms and native flora, and (4) examine the compression behavior of apple discs subjected to UV-C irradiation with or without pretreatments. The color and compression parameters were found to be dependent on UV-C dose, storage time and type of pretreatment. At the end of storage, samples exposed to only UV-C light turned darker (lower L* values) and less green (higher a* value) when compared to fresh-cut-apple slices or to samples on day 0 and this effect was more pronounced at the greatest UV-C dose. Light microscopic images showed breakage of cellular membranes in UV-C treated samples which may explain the increase in browning of irradiated apples. Both pretreatments helped in maintaining the original color of apple slices after UV-C light exposure. Natural microflora counts were higher in untreated UV-C than in UV-C treated samples along the whole storage. Survival patterns of inoculated microorganisms (Listeriainnocua ATCC 33090; Escherichia coli ATCC 11229 and Saccharomyces cerevisiae KE 162) depended on the UV-C dose, the type of microorganism and the apple pretreatment.  相似文献   

7.
Strain ST16PA, isolated from papaya was identified as Lactobacillus plantarum based on biochemical tests, PCR with species-specific primers and 16S rDNA sequencing. L. plantarum ST16PA produces a 6.5 kDa bacteriocin, active against different species from genera Enterobacter, Enterococcus, Lactobacillus, Pseudomonas, Streptococcus and Staphylococcus and different serotypes of Listeria spp. The peptide is inactivated by proteolytic enzymes, but not when treated with ??-amylase, catalase, lipase, Triton X-100, SDS, Tween 20, Tween 80, urea, NaCl and EDTA. However, presence of 1% Triton X-114 deactivates the bacteriocin. No change in activity was recorded after 2 h at pH values between 2.0 and 12.0, and after treatment at 100 °C for 120 min or 121 °C for 20 min. The mode of activity against Lactobacillus sakei ATCC 15521, Enterococcus faecalis ATCC 19443 and Listeria innocua 2030C was bactericidal, resulting in cell lysis and enzyme-leakage. No significant differences in cell growth and bacteriocin production were observed when strain ST16Pa was cultured in MRS broth at 26 °C and 30 °C for 24 h (25 600 AU/ml). However, even though strain ST16PA grows well in MRS broth at 15 °C and 37 °C, a reduction of bacteriocin production was observed (400 AU/ml and 1600 AU/ml, respectively). In addition, effect of MRS medium components, different initial pH and additions of glycerol or vitamins to the media on bacteriocin ST16Pa production was studied.Peptide ST16PA adsorbs (400 AU/ml) to producer cells. However, bacteriocin ST16Pa was adsorbed at 50% to cells of L. innocua 2030C and at 75% to L. sakei ATCC 15521 and E. faecalis ATCC 19433 when experiments were conducted at 30 °C and pH 6.5. Adsorption of bacteriocin ST16Pa to target cells at different temperatures, pH and in presence of potassium sorbate, sodium nitrate, sodium chloride, ascorbic acid, Tween 80 and Tween 20 were also studied. To the best of our knowledge, this is the first report on detection of L. plantarum in papaya.  相似文献   

8.
The production of alkylpyrazines and 2-acetyl-1-pyrroline by different Bacillus cereus strains, which has been previously reported, was studied in detail. B. cereus ATCC 27522 produced the highest amounts of flavour compounds when grown as surface cultures on plate count agar. Pyrazine, methylpyrazine, 2,5-dimethylpyrazine, trimethylpyrazine and 3-ethyl-2,5-dimethylpyrazine were produced in low amounts. Since they were also detected in control flasks, an enzymatic formation was concluded to be unlikely. Only the production of 3-ethyl-2,5-dimethylpyrazine was in all cases significantly different from the control. Detailed precursor studies revealed that the production of 2-acetyl-1-pyrroline by B. cereus ATCC 27522 proceeds via acetylation of 1-pyrroline, a metabolic degradation product of proline and ornithine. Comparison of results obtained from dynamic headspace and simultaneous steam distillation – solvent extraction showed that the use of a non-thermal extraction method is essential to obtain reliable results on the biological formation of these Maillard flavour compounds.  相似文献   

9.
This study investigated the formation and utilization of volatile compounds during papaya juice fermentation by a mixed culture of Saccharomyces cerevisiae and Williopsis saturnus. Time-course papaya juice fermentations were carried out using pure cultures of S. cerevisiae var. bayanus R2 and W. saturnus var. mrakii NCYC2251 and a mixed culture of the two yeasts at a ratio of 1:1000 (R2:NCYC2251). Changes in S. cerevisiae cell population, Brix, sugar consumption and pH were similar in the mixed culture and in the S. cerevisiae monoculture. There was an early growth arrest of W. saturnus in the mixed culture fermentation. A range of volatile compounds were produced during fermentation including fatty acids, alcohols, aldehydes and esters and some volatile compounds including those initially present in the juice were utilized. The mixed culture fermentation of S. cerevisiae and W. saturnus benefited from the presence of both yeasts, with more esters being produced than the S. cerevisiae monoculture and more alcohols being formed than the W. saturnus monoculture. The study suggests that papaya juice fermentation with a mixed culture of S. cerevisiae and W. saturnus may be able to result in the formation of more complex aroma compounds and higher ethanol level than those using single yeasts.  相似文献   

10.
Pulsed light (PL) technology is able to effectively destroy a wide variety of food spoilage and pathogenic microorganisms. However, the effectiveness of PL treatment depends on direct exposure of the target microorganisms to the short, high energy pulses of light. The complex physical and chemical properties of foods affect the way light propagates through a given food substrate, and thus there is a real potential for insufficiently or non-uniformly treated products. The objective of this work was to develop a method for predicting levels and spatial distribution of microbial inactivation in PL treatment of liquid substrates, and to validate the predictions with experimental data. Three liquids with different composition and optical properties (BPB, TSB, apple juice) were inoculated with either Escherichia coli ATCC 25922 or Listeria innocua FSL C2-008 and treated with PL, in two different geometries. The Weibull model was used to describe the microbial inactivation kinetics for each organism. The kinetic equations were coupled with previously determined equations describing either the total fluence (Ftotal) or UV fluence (FUV) distribution in each of the liquids, for either cylindrical or rectangular prismatic geometries. COMSOL simulation software was used to generate maps of spatial distribution of microbial inactivation and to predict the average volumetric inactivation for each substrate. The model that used Ftotal provided gross over-estimations for microbial inactivation, while using FUV as the treatment dose yielded reasonably good predictions of microbial inactivation, especially for the more opaque and turbid substrates. This approach can help processors determine which substrates would be suitable for PL treatment, and to design highly effective and uniform PL treatments.  相似文献   

11.
Escherichia coli O157:H7, Salmonella and Listeria innocua increased by more than 2 log10 units over a 24 h period on fresh-cut ‘Golden Delicious’ apple plugs stored at 25 and 20 °C. L. innocua reached the same final population level at 10 °C meanwhile E. coli and Salmonella only increased 1.3 log10 units after 6 days. Only L. innocua was able to grow at 5 °C. No significant differences were observed between the growth of foodborne pathogens on fresh-cut ‘Golden Delicious’, ‘Granny Smith’ and ‘Shampion’ apples stored at 25 and 5 °C. The treatment of ‘Golden Delicious’ and ‘Granny Smith’ apple plugs with the antioxidants, ascorbic acid (2%) and NatureSeal® (6%), did not affect pathogen growth. The effect of passive modified atmosphere packaging (MAP) on the growth of E. coli, Salmonella and L. innocua on ‘Golden Delicious’ apple slices was also tested. There were no significant differences in growth of pathogens in MAP conditions compared with air packaging of ‘Golden Delicious’ apple plugs, but the growth of mesophilic and psychrotrophic microorganisms was inhibited. These results highlight the importance of avoiding contamination of fresh-cut fruit with foodborne pathogens and the maintenance of the cold chain during storage until consumption.  相似文献   

12.
To reduce time for enumeration of viable Clostridium perfringens, fluorescence in situ hybridization in combination with filter cultivation (FISHFC) was employed. The method utilized a CLP-180 probe, based on the 16S rRNA region of C. perfringens, and FISHFC fluorescence microscopy to detect C. perfringens, but not organisms from other species. Optimal cultivation requirements for micro-colony formation were TSC medium, anaerobic conditions, 37 °C, and incubation for 6 h. Under these conditions, micro-colony diameters reached 100 μm, a size sufficient for hybridization. Enumeration of C. perfringens using the CLP-180-aided FISHFC method was realized in 9 h as compared to 3–5 days required by the conventional plate count method. Moreover, viable C. perfringens counts of food samples from the two methods were not significantly different.  相似文献   

13.
Prebiotics are non-digestible substrates that stimulate the growth of beneficial microbial populations in the intestine, especially Bifidobacterium species. Among them, fructo- and galacto-oligosaccharides are commonly used in the food industry, especially as a supplement for infant formulas. Mechanistic details on the enrichment of bifidobacteria by these prebiotics are important to understand the effects of these dietary interventions. In this study the consumption of galactooligosaccharides was studied for 22 isolates of Bifidobacterium longum subsp. infantis, one of the most representative species in the infant gut microbiota. In general all isolates showed a vigorous growth on these oligosaccharides, but consumption of larger galactooligosaccharides was variable. Bifidobacterium infantis ATCC 15697 has five genes encoding β-galactosidases, and three of them were induced during bacterial growth on commercial galactooligosaccharides. Recombinant β-galactosidases from B. infantis ATCC 15697 displayed different preferences for β-galactosides such as 4′ and 6′-galactobiose, and four β-galactosidases in this strain released monosaccharides from galactooligosaccharides. Finally, we determined the amounts of short chain fatty acids produced by strain ATCC 15697 after growth on different prebiotics. We observed that biomass and product yields of substrate were higher for lactose and galactooligosaccharides, but the amount of acids produced per cell was larger after growth on human milk oligosaccharides. These results provide a molecular basis for galactooligosaccharide consumption in B. infantis, and also represent evidence for physiological differences in the metabolism of prebiotics that might have a differential impact on the host.  相似文献   

14.
The application of Kluyveromyces marxianus (IFO 288), Lactobacillus delbrueckii ssp. bulgaricus (ATCC 11842) and Lactobacillus helveticus (ATCC 15009) as starter cultures for sourdough bread making was examined. Production of lactic and acetic acids, bread rising, volatile composition, shelf-life and organoleptic quality of the sourdough breads were evaluated. The amount of starter culture added to the flour, the dough fermentation temperature and the amount of sourdough used were examined in order to optimise the bread making process. The use of mixed cultures led to higher total titratable acidities and lactic acid concentrations compared to traditionally made breads. Highest acidity (3.41 g lactic acid/kg of bread) and highest resistance to mould spoilage were observed when bread was made using 50% sourdough containing 1% K. marxianus and 4% L. delbrueckii ssp. bulgaricus. The use of these cultures also improved the aroma of sourdough breads, as shown by sensory evaluations and as revealed by GC–MS analysis.  相似文献   

15.
This work analyzed the pulsed light (PL) (0.0–71.6 J/cm2)-induced damage on Saccharomyces cerevisiae KE162 cells in peptone water (pH 3.5 or 5.6) and apple juice (pH 3.5) by applying flow cytometry (FCM) and transmission electronic microscopy. Cells were labeled with fluorescein diacetate (FDA) for detecting membrane integrity and esterase activity and with propidium iodide (PI) for monitoring membrane integrity. S. cerevisiae inactivation curves reached 6–7 log reductions (peptone water systems) and 3.9 log reductions (apple juice) after 60 s (71.6 J/cm2) of PL exposure. FCM revealed the same damage pattern (although at different doses) in all media: at low doses, there was an increase in population in PI+?FDA+ quadrant, while at high doses, most of the population was located at quadrant PI+–FDA?, indicating that PL provoked rupture of the cytoplasm membrane allowing PI to penetrate cells and there was progressive loss of esterase activity. Comparison of conventional culture technique with FCM revealed the occurrence of certain cell subpopulations in peptone water with pH 3.5 which were stressed and lost their ability to grow in agar but still showed metabolic activity. Transmission electron microphotographs of PL-treated cells clearly indicated that various cell structures other than plasma membranes were altered and/or destroyed in a different degree depending on exposure time and type of medium.  相似文献   

16.
The aim of this study was to investigate the total mesophilic microorganisms, Pseudomonas genus, Enterobacteriaceae family, mold and yeast counts and the presence of Listeria monocytogenes and Salmonella spp on Tuber aestivum and Tuber melanosporum ascocarps. The results confirmed that the major percentage of the microorganisms, approximately 9.0 log ufc/g, were present in the peridium, the glebas of healthy truffles being practically free of microorganisms. The predominant microbial group was the Pseudomonas averaging 8.3 and 8.4 log cfu/g on T. aestivum and T. melanosporum whole ascocarps, respectively. The Enterobacteriaceae also achieved high populations, especially in T. aestivum truffles, with 6.3 log cfu/g. Molds and yeasts never exceeded 5.0 log cfu/g. The characterization of the isolates revealed that the fluorescens pseudomonads were the most prevalent. Raoultella terrigena and Enterobacter intermedius were the dominant Enterobacteriaceae. The identification of the yeast isolates revealed five species: Debaryomyces hansenii, Issatchenkia scutulata, Rhodotorula aurantiaca, Saccharomyces dairensis and Trichosporon beigelii subspecies A and B. The mold genera detected in both species of truffles were Aspergillus, Cladosporium, Penicillium and Fusarium, Trichoderma being present only in T. aestivum. L. monocytogenes was found in 10% of the samples of T. aestivum analysed but Salmonella spp. was not detected. Knowledge of the microbial population in terms of possible food borne and pathogen microorganisms is very useful for establishing successful disinfection and storage methods to prolong the shelf-life of ascocarps of T. aestivum and T. melanosporum.  相似文献   

17.
A pilot survey for the pathogens Salmonella and Escherichia coli O157:H7, and E. coli biotype 1 was conducted on 100 New Zealand-produced (domestic) pig carcasses and 110 imported pig meat samples over an 8-month period to assess the likelihood of introduction of novel pathogen strains into New Zealand (NZ), and as a guide for development of a domestic pork National Microbiological Database programme. Salmonella was not isolated from domestic pig carcasses or from pig meat imported from Canada and the USA. The prevalence of Salmonella in imported pig meat was 3.6% (95% CI 1.0–9.0) with positive samples detected from Australian pig meat. The prevalence of E. coli O157:H7 on domestic pig carcasses was 1% (95% CI 0.03–5.4) while the overall prevalence of E. coli O157:H7 in imported pig meat was 1.8% (95% CI 0.2–6.4), detected mainly from Australian but not from Canadian or US pork. All except three samples have an E. coli biotype 1 count of <100 CFU cm−2 or g−1, indicating good hygiene quality of domestic and imported pig meat. The results demonstrated that importation of uncooked pig meat is a potential route for the introduction of new clones of Salmonella and E. coli O157:H7 into New Zealand.  相似文献   

18.
Novel technologies that involve non-thermal processes have been investigated in the last two decades as full or partial alternatives to conventional heat treatment. The main objective of this study was to evaluate the survival of single or strain cocktail of Escherichia coli, Saccharomyces cerevisiae, and a yeast cocktail in orange (pH 3.5; 9° Brix) and/or apple (pH 3.1; 12° Brix) juices and in 0.1% w/w peptone water processed by two non-thermal techniques: high-intensity ultrasound (USc) and/or short-wave ultraviolet radiation (UV-C). USc treatments (20 kHz, 95 μm-wave amplitude) were performed using a stainless steel continuous flow cell with a 13-mm probe (0.2 L/min; 40°C). The UV-C device consisted of a 90-cm long UV-C-lamp (100 W) placed inside a glass tube leaving an annular flow space (0.2 L/min; 40°C). Inoculated systems were recirculated through simultaneous or consecutive USc and UV-C devices and samples were taken at preset time intervals. Microbial populations were monitored by plate count technique. In peptone water and apple juice, UV-C radiation provoked higher E. coli ATCC 35218 inactivation than USc treatment. E. coli ATCC 35218 and its cocktail were more sensitive than S. cerevisiae KE162 and the cocktail of yeasts. UV-C efficiency was highly dependent on media nature. The poor single effect of UV-C light in orange juice was enhanced by the combination with USc. Combined treatment was more effective in simultaneous rather than in a series of USc − UV-C arrangement.  相似文献   

19.
The effect of thermal and pressure treatments on Lactobacillus rhamnosus ATCC 53103 was evaluated by flow cytometric analysis in conjunction to standard cultivation techniques. A double staining technique with fluorochromes carboxyfluorescein diacetate (cFDA) and propidium iodide (PI) revealed that depending on temperature regime used heat-killed cells had different fluorescence behaviors. Cells killed at 60 °C were not stained at all whereas heat treatment at 75 °C resulted in a single population entirely labelled by PI. These findings indicated that thermal-induced cell death was achievable with or without membrane degradation. Hydrostatic pressures beyond 400 MPa inactivated L. rhamnosus ATCC 53103 in a different way. It was observed that the irreversible damage of the membrane-bound transport systems could be largely accounted for the cause of high pressure-induced cell death.  相似文献   

20.
The antibacterial potential of essential oil from flowers and ethanolic leaf extracts of Lonicera japonica Thunb. was evaluated for controlling the growth of a range of food-borne pathogens. Thirty-nine compounds representing 92.34% of the total oil were identified, of which trans-nerolidol (16.31%), caryophyllene oxide (11.15%), linalool (8.61%), p-cymene (7.43%), hexadecanoic acid (6.39%), eugenol (6.13%), geraniol (5.01%), trans-linalool oxide (3.75%), globulol (2.34%), pentadecanoic acid (2.25%), veridiflorol (1.83%), benzyl alcohol (1.63%) and phenylethyl alcohol (1.25%) were the major compounds. The oil and extracts revealed a remarkable antibacterial effect against Listeria monocytogenes ATCC 19116, Bacillus subtilis ATCC 6633, B. cereus SCK 11, Staphylococcus aureus (ATCC 6538 and KCTC 1916), Salmonella enteritidis KCTC 12021, S. typhimurium KCTC 2515, Enterobacter aerogenes KCTC 2190 and Escherichia coli ATCC 8739. However, no effect was observed for Pseudomonas aeruginosa KCTC 2004 and E. coli O157:H7 ATCC 43888. Our findings demonstrate that the oil and extracts derived from L. japonica might be a potential source of preservatives for use in the food or pharmaceutical industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号