首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beyond demonstrated beneficial health attributes, passion fruit rinds are a by-product of the fruit pulp industry, rich in total dietary fiber, particularly pectin. The aim of this study was to evaluate the influence of the addition of passion fruit fiber on the whey formation, rheological parameters, microstructure and sensorial characteristics of probiotic yoghurts. Skim milk bases enriched with 1% of passion fruit fiber or not were heat treated and inoculated with Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus, and divided into four groups according to the probiotic strain added — Lactobacillus acidophilus strains L10 and NCFM and Bifidobacterium animalis subsp. lactis strains Bl04 and B94. Fermentations were performed until the pH reached 4.5. Rheological characteristics of yoghurts were determined by a rotational rheometer in two cycles of shear rate ranging from 0 to 15 s? 1 in both upward and downward curves. Sensorial analysis of passion fruit fiber yoghurts, either without any probiotic or co-fermented by L. acidophilus L10 or B. animalis subsp. lactis Bl04, was evaluated against a control yoghurt without fiber. Photomicrographs of freeze-dried yoghurts were made by field-emission scanning electron microscope (SEM). Thixotropy of enriched yoghurts was higher than that of their respective controls in the two cycles of shear rate. Apparent viscosity was significantly higher in fiber yoghurts co-fermented by the lactobacilli than in their controls at the end of cold storage. Photomicrographs demonstrated that in passion fruit fiber yoghurts the casein gel was more compact and overlaid the fiber, while filaments of exopolysaccharides were more frequent in control yoghurts. Appearance, odor and color of the passion fruit fiber yoghurts received scores as ‘good’, and the intensity of the passion fruit flavor was considered weak by the sensory assessors. Results indicate that the passion fruit fiber is an almost neutral ingredient for the design of new high value-added yoghurt.  相似文献   

2.
Development of dairy organic probiotic fermented products is of great interest as they associate ecological practices and benefits of probiotic bacteria. As organic management practices of cow milk production allow modification of the fatty acid composition of milk (as compared to conventional milk), we studied the influence of the type of milk on some characteristics of fermented milks, such as acidification kinetics, bacterial counts and fatty acid content. Conventional and organic probiotic fermented milks were produced using Bifidobacterium animalis subsp. lactis HN019 in co-culture with Streptococcus thermophilus TA040 and Lactobacillus delbrueckii subsp. bulgaricus LB340. The use of organic milk led to a higher acidification rate and cultivability of Lactobacillus bulgaricus. Fatty acids profile of organic fermented milks showed higher amounts of trans-octadecenoic acid (C18:1, 1.6 times) and polyunsaturated fatty acids, including cis-9 trans-11, C18:2 conjugated linoleic (CLA-1.4 times), and α-linolenic acids (ALA-1.6 times), as compared to conventional fermented milks. These higher levels were the result of both initial percentage in the milk and increase during acidification, with no further modification during storage. Finally, use of bifidobacteria slightly increased CLA relative content in the conventional fermented milks, after 7 days of storage at 4 °C, whereas no difference was seen in organic fermented milks.  相似文献   

3.
This study describes a procedure that allows specific detection and enumeration of viable bacteria in four species of lactic acid bacteria (Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus casei subsp. casei and Lactobacillus acidophilus) and of Bifidobacterium lactis, mixed in fermented milk products. The procedure is based on the combined use of propidium monoazide (PMA), able to distinguish between viable and irreversibly damaged cells, with species-specific quantitative real-time PCR (RTi-PCR). Loss of viability of the species in a fermented milk through storage at 4 °C was similarly (P < 0.05) detected by PMA–RTi-PCR and selective plate counts. Furthermore, comparison of results obtained by both methods showed a Pearson linear correlation of 0.995. The enumeration of viable bacteria by PMA–RTi-PCR could be performed in 3 h, whereas enumeration by selective plate counts required three days. The procedure developed is a fast method for the identification, enumeration and discrimination of viability of lactic acid bacteria and bifidobacteria mixed in fermented milk products.  相似文献   

4.
Lactobacillus acidophilus or Bifidobacterium animalis subsp. lactis Bb‐12 and green banana pulp were used in order to obtain potentially probiotic and prebiotic yoghurts, which were compared over a 45‐day storage period. Goat milk yoghurts demonstrated probiotic effects up to 45 days of storage. Cow milk yoghurts produced with B. animalis subsp. lactis Bb‐12 showed a probiotic effect reduction during the storage period (1.74 log CFU/g). The type of milk affected the yoghurts’ chemical and physicochemical properties. Sensory acceptance was also affected, where cow milk yoghurts were better accepted than goat milk ones.  相似文献   

5.
Dependent on anthocyanin pigments, colour is one of the main quality factors of berry products. In this paper we assess the influence of probiotic bacteria on the degradation rate of anthocyanins in yoghurts with a highbush blueberry preparation during storage. Four types of yoghurts were prepared: first with the yoghurt starter culture YC-X16 only (Steptococcus thermophilus and Lactobacilllus delbrueckii subsp. bulgaricus) and three more, each with the starter culture YC-X16 and one of the three probiotic cultures: Bb-12, La-5 and LCP, respectively (Bif. animalis subsp. lactis – Bb-12; Lactobacillus. acidophilus – La-5 and Lactobacillus. paracasei subsp. paracasei – LCP).Derivatives of malvidin were the predominant anthocyanins in the tested yoghurts. Degradation of pigments occurred in accordance with the first-order reaction and its half-life time depended on the bacterial cultures. Anthocyanins in the probiotic yoghurt made with LCP culture were characterized by lower stability than those made with the other bacterial cultures. The impact of lactic bacteria or their metabolic products on the stability of anthocyanins in berry yoghurts shows that an appropriate selection of culture for production of yoghurt is recommended.  相似文献   

6.
In this work, a new encapsulating matrix, alginate–goats’ milk–inulin, was used to encapsulate Bifidobacterium animalis subsp. lactis BB‐12. The addition of inulin resulted in capsules with a compact structure, and a higher probiotic cell count under simulated gastrointestinal conditions and in probiotic goats’ milk yoghurt during refrigerated storage. Encapsulation of the probiotic bacteria led to slower post‐acidification yoghurts. The results of this study showed that the alginate–goats’ milk–inulin matrix has potential to be used as a new encapsulation material to encapsulate probiotics for use in goats’ milk‐based probiotic fermented dairy products, avoiding the cross‐contamination caused by using capsules based on cows’ milk.  相似文献   

7.

ABSTRACT

We examined the effect of storage time on culture viability and some rheological properties (yield stress, storage modulus, loss modulus, linear viscoelastic region, structural recuperation and firmness) of fermented milk made with Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus (LA) and Bifidobacterium animalis ssp. lactis in coculture with Streptococcus thermophilus (ST). Acidification profiles and factors that affect viability (postfermentation acidification, acidity and dissolved oxygen) were also studied during 35 days at 4C. Fermented milk prepared with a coculture of ST and Bifidobacterium lactis gave the most constant rheological behavior and the best cell viability during cold storage; it was superior to ST plus LA for probiotic fermented milk production.

PRACTICAL APPLICATIONS

Probiotic cultures should grow quickly in milk, provide adequate sensory and rheological properties to the product, and remain viable during storage. Commercially, it is very common to use yogurt starter culture (i.e. Streptococcus thermophilus[ST] and Lactobacillus delbrueckii ssp. bulgaricus) in combination with the probiotic bacteria in order to reduce fermentation time. However, LB tends to post acidify fermented milk, which reduces the viability of the probiotic bacteria; thus, it is recommended to use starter cultures devoid of this species. We found that the technological properties and the viability of the probiotic bacterium Bifidobacterium animalis ssp. lactis BL O4 in coculture with ST make it suitable for probiotic fermented milk production; it produces rheological characteristics similar to those of yogurt.  相似文献   

8.
Yoghurt is increasingly being used as a carrier of probiotic bacteria for their potential health benefits. To meet with a recommended level of ≥ 106 viable cells/g of a product, assessment of viability of probiotic bacteria in market preparations is crucial. This requires a working method for selective enumeration of these probiotic bacteria and lactic acid bacteria in yoghurt such as Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lb. acidophilus, Lb. casei and Bifidobacterium. This chapter presents an overview of media that could be used for differential and selective enumerations of yoghurt bacteria. De Man Rogosa Sharpe agar containing fructose (MRSF), MRS agar pH 5.2 (MRS 5.2), reinforced clostridial prussian blue agar at pH 5.0 (RCPB 5.0) or reinforced clostridial agar at pH 5.3 (RCA 5.3) are suitable for enumeration of Lb. delbrueckii subsp. bulgaricus when the incubation is carried out at 45 °C for 72 h. S. thermophilus (ST) agar and M17 are recommended for selective enumeration of S. thermophilus. Selective enumeration of Lb. acidophilus in mixed culture could be made in Rogosa agar added with 5-bromo-4-chloro-3-indolyl-β-d-glucopyranoside (X-Glu) or MRS containing maltose (MRSM) and incubation in a 20% CO2 atmosphere. Lb. casei could be selectively enumerated on specially formulated Lb. casei (LC) agar from products containing yoghurt starter bacteria (S. thermophilus and Lb. delbrueckii subsp. bulgaricus), Lb. acidophilus, Bifidobacterium spp. and Lb. casei. Bifidobacterium could be enumerated on MRS agar supplemented with nalidixic acid, paromomycin, neomycin sulphate and lithium chloride (MRS-NPNL) under anaerobic incubation at 37 °C for 72 h.  相似文献   

9.
The effect of high pressures of 100–450 MPa combined with temperatures of 20–40 °C on Lactobacillus delbrueckii subsp. bulgaricus ACA-DC0105, Streptococcus thermophilus ACA-DC0022 and Lactococcus lactis ACA-DC0049 cell viability and acid production ability was studied. The rates of decrease in pH and cell viability were estimated for all the process combinations studied. The viability and acidification ability of the cells depended on the process conditions. More intense process conditions resulted in a lower number of viable cells and simultaneous reduction of lactic acid production correlated to lower rates of decrease of pH. Lb. bulgaricus appeared to be the microorganism most resistant to pressure, while Lc. lactis the most sensitive. Similar behaviour was observed for the acidification ability of these microorganisms, with Lc. lactis being least able to decrease the pH value of cheese. The HP-treated strains could be used as adjunct starters for cheese production.  相似文献   

10.
K.E. Almeida  M.N. Oliveira 《LWT》2008,41(2):311-316
The acidification rates of Lactobacillus delbrueckii subsp. bulgaricus (Lb), Lactobacillus acidophilus (La), Lactobacillus rhamnosus (Lr), and Bifidobacterium animalis subsp. lactis (Bl) in co-culture with Streptococcus thermophilus (St) were studied in Minas frescal cheese whey. Effects of the co-culture composition and the final pH values on the kinetic parameters of acidification, post-acidification and counts of health promoting micro-organisms were also studied. Fermentation time to reach pH 4.5 was longer when St-Lr co-culture was used, while St-Lb had the shortest fermentation time when compared with the other co-culture combinations. All products showed development of acidity during the storage period and lowest values had been observed employing St-Bl co-culture. The technological interest of using M. frescal cheese whey for the production of a probiotic lactic beverage is discussed in this article.  相似文献   

11.
《International Dairy Journal》2005,15(11):1184-1190
Yoghurts were produced from a base milk containing three important nutraceuticals, namely ω-3-fatty acids, isoflavones and phytosterols. The cultures employed to make the yoghurts were single probiotic strains of Lactobacillus gasseri or Bifidobacterium infantis and, to achieve a short production time, a two-stage fermentation procedure was used with Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus providing the rapid acidification. Yoghurts containing counts of >1.0×108 cfu mL−1 of the individual probiotics and high counts of the traditional species from yoghurt were awarded overall scores for sensory acceptability >4.0 out of 5.0; the nutraceuticals appeared to have no adverse effect on flavour. Storage trials at 5 °C showed that the viability of the probiotic cultures was retained over 15 days.  相似文献   

12.
Experimentally prepared Jerusalem artichoke inulins (JAI) were compared with two commercial chicory root inulins for their prebiotic potentials in media broth model and growth-sustaining ability in non-fat yoghurts. Experimental yoghurts were made with 12% reconstituted skim milk (RSM) supplemented with 4% inulin powders, inoculated with mixed cultures of Lactobacillus casei LC-01, Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (1:0.5:0.5 based on supplier’s recommendation) and incubated overnight at 37 °C. Non-supplemented yoghurt was prepared from 16% RSM and used as control. The survival and acidifying activity of lactic and probiotic cultures in all yoghurts were investigated on weekly intervals during the shelf life of 28 days at 4 °C. Incorporation of JAI resulted in improved viability of LC-01, maintaining >7.0 log CFU/g during cold storage but did not affect the viability of yoghurt bacteria in comparison with the control.  相似文献   

13.
《International Dairy Journal》2007,17(9):1107-1114
This study describes selective plating methodologies for enumeration of mixed cultures of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, L. acidophilus, L. paracasei subsp. paracasei and Bifidobacterium lactis in fermented milk based on selective antibiotic-free media. Enumeration of S. thermophilus was performed using M17-lactose. MRS-fructose was suitable for enumeration of L. bulgaricus and MRS-maltose for differentiation between L. acidophilus and L. paracasei. The selective enumeration of B. lactis was obtained using MRS-raffinose containing 0.05% LiCl. The bacterial counts obtained using selective methods were equivalent to those under optimum culture conditions at a probability level of 95%. Performance of the methods was verified in fermented milk products where identification of the enumerated species was confirmed by species-specific polymerase chain reaction. This study shows that combination of species-specific polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) analysis has great detection and identification potential for verification of accurate species labelling in fermented milk without prior isolation of the bacteria.  相似文献   

14.
The aim of this study was to monitor viability of probiotic Lactobacillus paracasei NFBC 338 during: (a) two-stage yoghurt fermentation with starter cultures Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus, (b) following spray drying, and (c) during storage for 42 days. During the initial fermentation phase (10 h), probiotic Lactobacillus numbers increased 7-fold to 3.9 × 109 cfu g?1 and these numbers were maintained during fermentation for a further 3 h in the presence of the yoghurt starters. Following spray-drying, the probiotic culture survived best, followed by S. thermophilus and L. delbrueckii subsp. bulgaricus (yielding 3.4 × 108, 1.2 × 108 and 4.0 × 105 cfu g?1 powder, respectively). L. paracasei NFBC 338 and S. thermophilus were stable during storage at 4 °C and 15 °C (for 42 days) with viable counts exceeding 107 cfu g?1, while viability of L. delbrueckii subsp. bulgaricus decreased considerably throughout storage.  相似文献   

15.
Cone yoghurt is a yoghurt variety produced by adding only pine cones to milk without culture in a limited area of Turkey. The present study was conducted to identify and characterize lactic flora in traditional cone yoghurt. Morphological, cultural, physiological, biochemical, and genotypic characteristics were employed to identify lactic acid bacteria isolates from cones and cone yoghurts. Streptococcus salivarius subsp. thermophilus (S. thermophilus) and Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) were obtained from both cones and yoghurts. Among the isolates, L. plantarum was frequently isolated except for these two bacteria (S. thermophilus and L. bulgaricus). The results indicate that the cone yoghurt has a mixed microflora contrary to the yoghurt produced by the addition of a starter culture and S. thermophilus, and L. bulgaricus in cone yoghurt originates from the pine cones.  相似文献   

16.
Milk was fermented with the exopolysaccharide-producing (EPS+) strains Lactococcus lactis subsp. cremoris, Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus and with the non-EPS-producing strain (EPS) L. lactis subsp. cremoris. The kinetics of gelation and the behaviour of set fermented milk during and after shearing were studied using rheometry and confocal scanning laser microscopy. The time of gelation of milk depended on the kinetics of acidification of strains whereas the pH of gelation depended mostly on the presence of exopolysaccharides (EPS). In set fermented milk with EPS+ strains, bacteria were observed in protein-free areas likely filled with EPS. Phase-separated EPS and caseins contributed to induce the gelation of fermented milk at pH 5.6. The high resistance to shearing of milk fermented with the EPS+ strain L. lactis subsp. cremoris might be due to the negative charge of the exopolysaccharide allowing an attractive interaction with caseins.  相似文献   

17.
The effect of fortification of yoghurt with sodium–calcium caseinate (SCC) and whey protein concentrate (WPC) on some properties of set‐type yoghurt were investigated. The addition of WPC enhanced the viability of Lactobacillus delbrueckii subsp. bulgaricus more than SCC. The highest firmness values were obtained from SCC‐fortified yoghurts, whereas yoghurts fortified with WPC had the highest water‐holding capacity during storage. The yoghurts fortified with 4% w/w SCC or 4% w/w WPC had the highest viscosity. Yoghurts fortified with 2% w/w SMP, SCC or WPC showed similar taste and overall acceptability scores; however, samples containing 4% w/w SCC or 4% w/w WPC had the lowest scores.  相似文献   

18.
The objective of this work was to study the autolytic behaviour of strains of mesophilic (Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris) and thermophilic lactic acid bacteria (Lactobacillus helveticus, Lb. delbrueckii subsp. lactis and Streptococcus thermophilus) in UF cheese. Cheeses were made from a UF-retentate (milk concentrated by a factor of 6) of microfiltered milk (0.8 μm pore size membrane) using the following starter systems: (1) single inocula of autolytic strains of L. lactis (US3, AM2 or AM1), non-autolytic strains of L. lactis (AM2-C or CNRZ-144), (2) a co-inocula of strains of Lb. helveticus (ITG-LH1, CNRZ-32 or CNRZ-303), Lb. delbrueckii subsp. lactis (ITG-LL14 or ITG-LL51) with the same strain of S. thermophilus CNRZ-1358. Cell viability was monitored over a 28 day ripening period by enumeration on selective media. Degree of lysis was determined by the measurement of the intracellular marker lactate dehydrogenase (LDH) activity, and also by immunodetection of intracellular proteins with species specific antibodies. In UF cheeses, lysis of autolytic strains of L. lactis was significantly delayed, showing release of intracellular components after 21 days of ripening. No lysis was observed for non-autolytic L. lactis strains or for S. thermophilus. Lysis of thermophilic lactobacilli (Lb. helveticus, Lb. delbrueckii), was observed from the start of ripening, but the onset and the level of lysis observed was strain and species dependent.  相似文献   

19.
A pentaplex PCR assay for the rapid, selective and simultaneous detection of Lactobacillus helveticus, L. delbrueckii subsp. lactis, L. delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and L. fermentum, was developed. The target sequences were a group of genes coding for beta-galactosidase production (S. thermophilus and L. delbrueckii subsp. bulgaricus), for cell-enveloped associated proteinase synthesis (L. helveticus), for dipeptide transport system production (L. delbrueckii subsp. lactis) and for arginine-ornithine antiporter protein production (L. fermentum). The analytical specificity of the assay was evaluated with 5 reference strains and 140 lactic acid bacterial strains derived from raw milk cheeses and belonging to the Lactobacillus, Streptococcus, Lactococcus and Enterococcus genera. The identification limit for each target strain was 103 CFU/ml. This new molecular assay was used to investigate the LAB population by direct extraction of DNA from the 12 whey cultures for Grana Padano. The pentaplex PCR assay revealed a good correspondence with microbiological analyses and allowed to identify even minor LAB community members which, can be out-competed in vitro by numerically more abundant microbial species.  相似文献   

20.
Microencapsulation of bacteria in hydrocolloid beads is known as a potential way to enhance and protect their survivability in the digestive tract. We encapsulated a mix of two lactic bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus) in sodium alginate (AG) and chitosan (CH) matrices. The morphological parameters of beads containing bacteria were comparatively measured. The FTIR fingerprint can discriminate the presence of bacteria into the beads, identifying specific absorption peaks for bacteria located at 1750, 2852 and 2926 cm?1. To check the survivability of bacteria, beads were incubated in simulated gastric juice (pH 1.5) and intestinal juice (pH 7.2) for different periods of time, up to 120 min. The 2% AG beads, better than CH beads, provided best protection of bacterial survivability. Encapsulated mix of S. thermophilus and L. delbrueckii subsp. bulgaricus can behave as a probiotic bacteria, viable, surviving in the simulated gastric and intestinal juice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号