首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We evaluated the feasibility of collecting peripheral blood progenitor cells (PBPC) in patients with acute myeloid leukaemia (AML) following two cycles of induction chemotherapy with idarubicin, cytarabine and etoposide (ICE), and one cycle of consolidation therapy with high-dose cytarabine and mitoxantrone (HAM). Thirty-six patients of the multicentre treatment trial AML HD93 were enrolled in this study, and a sufficient number of PBPC was harvested in 30 (83%). Individual peak concentrations of CD34+ cells in the blood varied (range 13.1-291.5/microl; median 20.0/microl). To reach the target quantity of 2.5 x 10(6) CD34+ cells/kg, between one and six (median two) leukaphereses (LP) were performed. The LP products contained between 0.2 x 10(6) and 18.9 x 10(6) CD34+ cells/kg (median 1.2 x 10(6)/kg). Multivariate analysis showed that the white blood cell count prior to HAM and the time interval from the start of HAM therapy to reach an unsupported platelet count > 20 x 10(9)/l were predictive for the peak value of CD34+ cells in the blood during the G-CSF stimulated haematological recovery. In 16 patients an intraindividual comparison was made between bone marrow (BM) and PBPC grafts. Compared to BM grafts, PBPC grafts contained 14-fold more MNC, 5-fold more CD34+ cells and 36-fold more CFU-GM. A CD34+ subset analysis showed that blood-derived CD34+ cells had a more immature phenotype as indicated by a lower mean fluorescence intensity for HLA-DR and CD38. In addition, the proportion of CD34+/Thy-1+ cells tended to be greater in the PBPC grafts. The data indicate that sufficient PBPC can be collected in the majority of patients with AML following intensive double induction and first consolidation therapy with high-dose cytarabine and mitoxantrone.  相似文献   

2.
The purpose of the study was to evaluate the effect of delayed granulocyte colony-stimulating factor (G-CSF) use on hematopoietic recovery post-autologous peripheral blood progenitor cell (PBPC) transplantation. Patients were randomized to begin G-CSF on day +1 or day +7 post transplantation. Thirty-seven patients with lymphoma or myeloma undergoing high-dose therapy and autologous PBPC rescue were randomized to daily subcutaneous G-CSF beginning on day +1 or day +7 post-transplant. Patients < or =70 kg received 300 microg/day and >70 kg 480 microg/day. All patients were reinfused with PBPCs with a CD34+ cell count >2.0 x 10(6)/kg. Baseline characteristics of age, sex and CD34+ cell count were similar between the two arms, the median CD34+ cell count being 5.87 x 10(6)/kg in the day +1 group and 7.70 x 10(6)/kg in the day +7 group (P=0.7). The median time to reach a neutrophil count of >0.5 x 10(9)/l was 9 days in the day +1 arm and 10 days in the day +7 arm, a difference which was not statistically significant (P=0.68). Similarly, there was no difference in median days to platelet recovery >20000 x 10(9)/l, which was 10 days in the day +1 arm and 11 days in the day +7 arm (P=0.83). There was also no significant difference in the median duration of febrile neutropenia (4 vs 6 days; P=0.7), intravenous antibiotic use (7 vs 8 days; P=0.54) or median number of red blood cell transfusions (4 vs 7 units; P=0.82) between the two arms. Median length of hospital stay was 11 days post-PBPC reinfusion in both groups. The median number of G-CSF injections used was 8 in the day +1 group and 3 in the day +7 group (P < 0.0001). There is no significant difference in time to neutrophil or platelet recovery when G-CSF is initiated on day +7 compared to day +1 post-autologous PBPC transplantation. There is also no difference in number of febrile neutropenic or antibiotic days, number of red blood cell transfusions or length of hospital stay. The number of doses of G-CSF used per transplant is significantly reduced with delayed initiation, resulting in a significant reduction in drug costs. For patients with an adequately mobilized PBPC graft, the initiation of G-CSF can be delayed until day +7 post-PBPC reinfusion.  相似文献   

3.
We investigated peripheral blood progenitor cell (PBPC) mobilization by disease-specific chemotherapy in patients with metastatic soft tissue sarcoma (STS). Nine patients, five females and four males, aged 12-51 years, pretreated by one to nine courses of cytotoxic chemotherapy, underwent STS-specific mobilization followed by G-CSF at 5 microg/kg/day. PBPC were collected by 19 conventional-volume aphereses (8-12 l) with one to four procedures in individual patients. Leukaphereses started on median day 15 (range 13-18) from the first day of mobilization chemotherapy at medians of 25.8 x 10(3) WBC/microl (6.8-46.9), 3.5 x 10(3) MNC/microl (1.1-8.8), 122 x 10(3) platelets/microl (72-293) and 30.7 CD34+ cells/microl (6.7-207.8). Cumulative harvests resulted in medians of 4.6 x 10(8) MNC/kg (3.0-6.4), 2.9 x 10(6) CD34+ cells/kg (1.1-11.1) and 12.0 x 10(4) CFU-GM/kg (2.0-37.8). Eight patients underwent high-dose chemotherapy (HDCT) followed by PBPC rescue. Seven patients recovered hematopoiesis at medians of 12 days (8-15) for ANC >0.5 x 10(3)/microl and 14 days (8-27) for platelets >20 x 10(3)/microl. One patient, who received 1.6 x 10(6) CD34+ cells/kg, exhibited delayed ANC recovery on day +37 and failed to recover platelets until hospital discharge on day +55. We conclude that in patients with metastatic STS, who are pretreated by standard chemotherapy, PBPC can be mobilized by a further course of STS-specific chemotherapy plus G-CSF. One to four conventional-volume aphereses result in PBPC autografts that can serve as hematopoietic rescue for patients scheduled for HDCT.  相似文献   

4.
The safety and optimal dose and schedule of stem cell factor (SCF) administered in combination with filgrastim for the mobilization of peripheral blood progenitor cells (PBPCs) was determined in 215 patients with high-risk breast cancer. Patients received either filgrastim alone (10 microg/kg/d for 7 days) or the combination of 10 microg/kg/d filgrastim and 5 to 30 microg/kg/d SCF for either 7, 10, or 13 days. SCF patients were premedicated with antiallergy prophylaxis. Leukapheresis was performed on the final 3 days of cytokine therapy and, after high-dose chemotherapy and infusion of PBPCs, patients received 10 microg/kg/d filgrastim until absolute neutrophil count recovery. The median number of CD34+ cells collected was greater for patients receiving the combination of filgrastim and SCF, at doses greater than 10 microg/kg/d, than for those receiving filgrastim alone (7.7 v 3.2 x 10(6)/kg, P < .05). There were significantly (P < .05) more CD34+ cells harvested for the 20 microg/kg/d SCF (median, 7.9 x 10(6)/kg) and 25 microg/kg/d SCF (median, 13.6 x 10(6)/kg) 7-day combination groups than for the filgrastim alone patients (median, 3.2 x 10(6)/kg). The duration of administration of SCF and filgrastim (7, 10, or 13 days) did not significantly affect CD34+ cell yield. Treatment groups mobilized with filgrastim alone or with the cytokine combination had similar hematopoietic engraftment and overall survival after PBPC infusion. In conclusion, the results of this study indicate that SCF therapy enhances CD34+ cell yield and is associated with manageable levels of toxicity when combined with filgrastim for PBPC mobilization. The combination of 20 microg/kg/d SCF and 10 microg/kg/d filgrastim with daily apheresis beginning on day 5 was selected as the optimal dose and schedule for the mobilization of PBPCs.  相似文献   

5.
Engraftment kinetics after high-dose chemotherapy (HDC) were evaluated in patients receiving autologous peripheral blood stem cell (PBSC) infusions with a low CD34+ cell content. Forty-eight patients were infused with < 2.5 x 10(6) CD34+ cells/kg; 36 because of poor harvests and 12 because they electively received only a fraction of their harvested cells. A median of 2.12 x 10(6) CD34+ cells/kg (range, 1.17-2.48) were infused following one of seven different HDC regimens. All patients achieved absolute neutrophil counts > or = 0.5 x 10(9)/l at a median of day 11 (range, 9-16). Forty-seven patients achieved platelet counts > or = 20 x 10(9)/l at a median of day 14 (range, 8-250). Nine of 47 (19%) had platelet recovery after day 21, 4/47 (9%) after day 100 and one died on day 240 without platelet recovery. Twenty-six patients (54%) died of progressive disease in 51-762 days; 22 (46%) are alive at a median of 450 days (range, 94-1844), 17 (35%) of whom are surviving disease-free at a median of 494 days (range, 55-1263). No patient died as a direct consequence of low blood cell counts. These data demonstrate that PBSC products containing 1.17-2.48 x 10(6) CD34+ cells/kg resulted in relatively prompt neutrophil recovery in all patients but approximately 10% had delayed platelet recovery.  相似文献   

6.
Fourteen patients with stage II-IV breast cancer were enrolled in a phase II study of cyclophosphamide followed by PIXY321 as a means of mobilizing peripheral blood progenitor cells (PBPC). All 14 women tolerated PIXY321 well, with the predominant toxicities being erythema at the injection site, fever, and arthralgias. A median of two aphereses yielded a mean of 1.3 x 10(8) mononuclear cells/kg, 8.9 x 10(4) colony-forming units-granulocyte/macrophage (CFU-GM)/kg, and 4.5 x 10(6) CD34+ cells/kg. All 14 patients underwent high-dose chemotherapy with PBPC support, the median day to ANC >500 cells/microliter was 10.6, and the median day to platelets >20,000 cells/microliter was 13. The day of 90th percentile platelet recovery was 15. When compared to PBPCs mobilized by cyclophosphamide followed by GM-CSF, the use of PIXY321 may confer an advantage of enhanced platelet recovery.  相似文献   

7.
2-Hydroxyisonicotinate dehydrogenase isolated from Mycobacterium sp. INA1   总被引:1,自引:0,他引:1  
The objective of this study was to identify factors associated with poor mobilization of peripheral blood progenitor cells (PBPCs) or delayed platelet engraftment after high-dose therapy and autologous stem cell transplantation in patients with lymphoma. Fifty-eight patients with Hodgkin's disease or non-Hodgkin's lymphoma underwent PBPC transplantation as the "best available therapy" at Memorial Sloan-Kettering Cancer Center (New York, NY) between 1993 and 1995. PBPCs were mobilized with either granulocyte colony-stimulating factor (G-CSF) alone (n = 19) or G-CSF following combination chemotherapy (n = 39). Forty-eight of these patients underwent a PBPC transplant, receiving a conditioning regimen containing cyclophosphamide, etoposide, and either total body irradiation, total lymphoid irradiation, or carmustine. A median number of 4.6 x 10(6) CD34+ cells/kg were obtained with a median of three leukapheresis procedures. Mobilization of PBPCs using chemotherapy plus G-CSF was superior to G-CSF alone (6.7 x 10(6) versus 1.5 x 10(6) CD34+ cells/kg; P = 0.0002). Poorer mobilization of progenitor cells was observed in patients who had previously received stem cell-toxic chemotherapy, including (a) nitrogen mustard, procarbazine, melphalan, carmustine or > 7.5 g of cytarabine chemotherapy premobilization (2.0 x 10(6) versus 6.0 x 10(6) CD34+ cells/kg; P = 0.005), or (b) > or = 11 cycles of any previous chemotherapy (2.6 x 10(6) versus 6.7 x 10(6) CD34+ cells/kg; P = 0.02). Platelet recovery to > 20,000/microliter was delayed in patients who received < 2.0 x 10(6) CD34+ cells (median, 13 versus 22 days; P = 0.06). Patients who received > or = 11 cycles of chemotherapy prior to PBPC mobilization tended to have delayed platelet recovery to > 20,000/microliter and to require more platelet transfusions than less extensively pretreated patients (median, 13.5 versus 23.5 days; P = 0.15; median number of platelet transfusion episodes, 13 versus 9; P = 0.17). These data suggest that current strategies to mobilize PBPCs may be suboptimal in patients who have received either stem cell-toxic chemotherapy or > or = 11 cycles of chemotherapy prior to PBPC mobilization. Alternative approaches, such as ex vivo expansion or the use of other growth factors in addition to G-CSF, may improve mobilization of progenitor cells for PBPC transplantation.  相似文献   

8.
Large-volume leukapheresis (LVL), defined as the processing of at least three blood volumes in a single session for peripheral blood progenitor cell (PBPC) collection, was performed in 32 small children weighing < or = 25 kg, aged 10 months to 8 years, with a variety of malignancies. Harvesting of PBPC was started after 4 days of cytokine (G-CSF, 12 micrograms/kg s.c.) alone. Procedures were performed using a continuous flow blood cell separator (COBE Spectra). The automated program of lymphocytapheresis was modified to achieve a collection rate of 0.9 ml/min. The extracorporeal line was primed with a unit of a packed red blood cells before the procedure. Acid citrate dextrose (ACD) was used as anticoagulant with an ACD inlet ratio of 1:14 and an ACD infusion rate of 1.1 ml/min/L of total blood volume. The inlet flow ranged between 6 and 35 ml/min (median 20 ml/min). A total of 37 apheresis procedures were performed (median 1, range 1-3). In 84% of patients, a single apheresis yields the minimum number of PBPC cells required for transplantation. No consistent side effects were observed, and LVL was well tolerated by children. A median of 7.7 x 10(8) kg MNC, 5.4 x 10(6)/kg CD34+, and 6.2 x 10(4)/kg CFU-GM per apheresis were harvested. Patients with neuroblastoma had a significantly lower yield than other patients. To date, 27 patients have been transplanted after myeloablative treatment, and rapid and sustained engraftment was achieved in all cases. The number of CD34+ cells infused was highly correlated with engraftment kinetics. LVL can be safely and easily performed in small children, allowing adequate PBPC collection for transplantation with rapid hematologic recovery.  相似文献   

9.
Optimal numbers of CD34(+) cells to be reinfused in patients undergoing peripheral blood progenitor cell (PBPC) transplantation after high-dose chemotherapy are still unknown. Hematologic reconstitution of 168 transplantations performed in patients with lymphoproliferative diseases was analyzed according to the number of CD34(+) cells reinfused. The number of days from PBPC reinfusion until neutrophil recovery (>1.0 x 10(9)/L) and unsustained platelet recovery (>50 x 10(9)/L) were analyzed in three groups defined by the number of CD34(+) cells reinfused: a low group with less than or equal to 2.5 x 10(6) CD34(+) cells/kg, a high group with greater than 15 x 10(6) CD34(+) cells/kg, and an intermediate group to which the former two groups were compared. The 22 low-group patients had a significantly delayed neutrophil (P < .0001) and platelet recovery (P < .0001). The 41 high-group patients experienced significantly shorter engraftment compared with the intermediate group with a median of 11 (range, 8 to 16) versus 12 (range, 7 to 17) days for neutrophil recovery (P = .003), and a median of 11 (range, 7 to 24) versus 14 (range, 8 to 180+) days for platelet recovery (P < .0001). These patients required significantly less platelet transfusions (P = .002). In a multivariate analysis, the amount of CD34(+) cells reinfused was the only variable showing significance for neutrophil and platelet recovery. High-group patients had a shorter hospital stay (P = .01) and tended to need fewer days of antibotic administration (P = .12). In conclusion, these results suggest that reinfusion of greater than 15 x 10(6) CD34(+) cells/kg after high-dose chemotherapy for lymphoproliferative diseases further shortens hematopoietic reconstitution, reduces platelet requirements, and may improve patients' quality of life.  相似文献   

10.
Conventional hematopoietic stem cell cryopreservation methods use a DMSO concentration of 10%. However, cells manipulated ex vivo may require more refined freezing protocols adapted to the specific cell suspension. In this retrospective study, we evaluated the results obtained with CD34+ cells purified from peripheral blood of 39 patients on the CEPRATE SC System and frozen in 7.5% DMSO with a view to transplantation. The post-freezing recovery of progenitor cells was 89.4 +/- 27.87% for CD34+ cells, 59.13 +/- 36.93% for CFU-GM, and 53.49 +/- 40.71 for BFU-E. Neither the purity of the suspension nor the nucleated cell density during freezing was predictive of cell recovery. No difference was observed between cells stored in vials and bags. Thirty-seven patients transplanted with the concentrated CD34+ fraction received 4.46 x 10(6) CD34+ cells/kg and 33.04 x 10(4) CFU-GM/kg. The median time to granulocyte (>0.5 x 10(9)/l) and platelet (>50 x 10(9)/l) engraftment was 11 and 13 days, respectively. Only cell density and the infused number of CD34+ cells and CFU-GM were significantly related to hematological recovery. Our data suggest that purified CD34+ cells can be successfully cryopreserved in 7.5% DMSO and may represent a first step in establishing freezing parameters for selected CD34+ cells.  相似文献   

11.
We have prospectively evaluated the feasibility and results of the biotin-avidin immunoadsorption method (Ceprate SC system) for a phase I/II study of T-cell depletion of granulocyte colony-stimulating factor (G-CSF) mobilized peripheral blood progenitor cells (PBPC) for allogeneic transplantation. Twenty consecutive patients, median age, 40 years (21 to 54) and diagnoses of chronic myeloid leukemia in chronic phase (n = 5), acute myeloblastic leukemia (n = 7), acute lymphoblastic leukemia (n = 2), chronic myelomonocytic leukemia (n = 1), refractory anemia with excess of blasts in transformation (n = 3), histiocytosis X (n = 1), and chronic lymphocytic leukemia (n = 1), were conditioned with cyclophosphamide (120 mg/kg) and total body irradiation (13 Gy; 4 fractions). HLA identical sibling donors received G-CSF at 10 microg/kg/d subcutaneously (SC); on days 5 and 6 (19 cases) and days 5 to 8 (1 case) donors underwent 10 L leukapheresis. PBPC were purified by positive selection of CD34+ cells using immunoadsorption biotin-avidin method (Ceprate SC) and were infused in the patients as the sole source of progenitor cells. No growth factors were administered posttransplant. The median recovery of CD34+ cells after the procedure was of 65%. The median number of CD34+ cells infused in the patients was 2.9 (range, 1.5 to 8.6) x 10(6)/kg. The median number of CD3+ cells administered was 0.42 x 10(6)/kg (range, 0.1 to 2). All patients engrafted. Neutrophil counts >500 and >1,000/microL were achieved at a median of 14 days (range, 10 to 18) and 15 days (range, 11 to 27), respectively. Likewise, platelet counts >20,000 and >50,000/microL were observed at a median of 10 days (range, 6 to 23) and 17 days (range, 12 to 130), respectively. Graft-versus-host disease (GVHD) prophylaxis consisted of cyclosporine plus methylprednisolone. No patient developed either grade II to IV acute or extensive chronic GVHD. After a median follow-up of 7.5 months (range, 2 to 22) three patients have relapsed, and one of them is again in hematologic and cytogenetic remission after infusion of the donor lymphocytes. Two patients died in remission: one on day +109 of pulmonary aspergillosis and the other on day +251 of metastasic relapse of a previous breast cancer. Sixteen of the 20 patients are alive in remission after a median follow-up of 7.5 months (range, 2 to 22). In conclusion, despite the small number of patients and limited follow-up, it appears that this method allows a high CD34+ cell recovery from G-CSF mobilized PBPC and is associated with rapid engraftment without significant GVHD, and with low transplant related mortality.  相似文献   

12.
The CD34 antigen is expressed by human hematopoietic progenitor and stem cells. These cells are capable of reconstituting marrow function after marrow-ablative chemo-radiotherapy. Several different technologies have been developed for the separation of CD34+ cells from bone marrow or peripheral blood stem cell (PBSC) components. We used an immunomagnetic separation technique to enrich CD34+ cells from PBSC components in anticipation of autologous transplantation for patients with B lymphoid malignancies. Twenty-nine patients enrolled on this study and received mobilization chemotherapy followed by G-CSF. Of these, 21 achieved a peripheral blood CD34+ cell level of at least 2.0 x 10(4)/l required by protocol for separation of the stem cell components. A median of three components per patient was collected for processing. The average CD34+ cell concentration in the components after apheresis was 1.0 +/- 1.2%. After the CD34+ cell selection, the enriched components contained 0.6 +/- 0.6% of the starting nucleated cells. The recovery of CD34+ cells, however, averaged 58.4 +/- 19.2% of the starting cell number, with a purity of 90.8 +/- 6.5%. Overall depletion of CD34- cells was 99.96 +/- 0.06%. Nineteen patients were treated with marrow-ablative conditioning regimens and received an average of 6.2 +/- 2.0 x 10(6) CD34+ cells/kg body weight. These patients recovered to an ANC >0.5 x 10(9)/l at a median of 11 days (range 8-14), and platelet transfusion independence at a median of 9 days (range 5-13). Four patients died of transplant-related complications or relapse before 100 days after transplantation. No patient required infusion of unseparated cells because of failure of sustained bone marrow function. These data demonstrate that peripheral blood-derived CD34+ cells enriched by use of an immunomagnetic separation technique are capable of rapid engraftment after autologous transplantation.  相似文献   

13.
Many centers use CY and G-CSF to mobilize PBPC. In this study we explored whether a standard chemotherapy regimen consisting of mitoguazon, ifosfamide, MTX and etoposide (MIME) combined with G-CSF was capable of mobilizing PBPC in lymphoma patients. Twelve patients with Hodgkin's disease (HD) and 38 patients with non-Hodgkin's lymphoma (NHL) were mobilized with MIME/G-CSF. Most patients were heavily treated with different chemotherapy regimens receiving a median of 11 cycles (range 3 to 20) of chemotherapy prior to mobilization. It was found that the optimal time of PBPC harvest was at days 12 and 13 after initiating the mobilization regimen. The median number of collected CD34+ cells per kg body weight was 7.1 x 10(6) (range 0.5-26.2). More than 2.0 x 10(6) CD34+ cells/kg were achieved in 69% of the patients after one apheresis. When additional cycles of apheresis were done, only 6% failed to harvest this number of CD34+ cells. There was a statistically significant inverse correlation between the number of prior chemotherapy cycles and CD34+ cell yield (P = 0.003). No such association was found between CD34+ cell yield and prior radiotherapy. When MIME/G-CSF was compared with Dexa-BEAM/G-CSF, it was found that MIME/G-CSF tended to be more efficient in mobilizing PBPC in spite of being less myelotoxic. All patients transplanted with MIME/G-CSF mobilized PBPC had fast and sustained engraftment. These results demonstrate that an ordinary salvage chemotherapy regimen, such as MIME combined with G-CSF can be successfully used to mobilize PBPC.  相似文献   

14.
The availability of hematopoietic growth factors has greatly facilitated the mobilization and collection of peripheral blood stem cells (PBSC). It was the aim of this double-blind study to compare the PBSC-mobilizing efficacy of recombinant human G-CSF and GM-CSF when administered post-chemotherapy. Twenty-six patients with relapsed Hodgkin's disease were included in the study. Their median age was 31 years (range, 22-59) and 14 patients were males and 12 were females. Patients were pretreated with a median of eight cycles of cytotoxic chemotherapy, while 18 patients had undergone extended field irradiation. The patients received dexamethasone 24 mg days 1-7, melphalan 30 mg/m2 day 3, BCNU 60 mg/m2 day 3, etoposide 75 mg/m2 days 4-7, Ara-C 100 mg/m2 twice daily days 4-7 (Dexa-BEAM). Twelve patients were randomized to receive 5/microg/kg/day G-CSF and 14 patients to receive 5 microg/kg/day GM-CSF, both administered subcutaneously starting on day 1 after the end of Dexa-BEAM. Primary endpoints of the study were the number of CD34+ cells harvested per kg body weight on the occasion of six consecutive leukaphereses and the time needed for hematological reconstitution following autografting. Twenty-one patients completed PBSC collection, and six patients of the G-CSF group and nine of the GM-CSF group were autografted. No difference was observed with respect to the median yield of CFU-GM and CD34+ cells: 32.5 x 10(4)/kg vs 31.3 x 10(4)/kg CFU-GM, and 7.6 x 10(6)/kg vs 5.6 x 10(6)/kg CD34+ cells, for G-CSF and GM-CSF, respectively (U test, P= 0.837 and 0.696). High-dose chemotherapy consisted of cyclophosphamide 1.7 g/m2 days 1-4, BCNU 150 mg/m2 days 1-4, etoposide 400 mg/m2 days 1-4. All patients transplanted with more than 5 x 10(6) CD34+ cells/kg had a rapid platelet recovery (20 x 10(9)/l) between 6 and 11 days and neutrophil recovery (0.5 x 10(9)/1) between 9 and 16 days, while patients transplanted with less than 5 x 10(6)/kg had a delayed reconstitution, regardless of the kind of growth factor used for PBSC mobilization. In conclusion, our data indicate that in patients with Hodgkin's disease G-CSF and GM-CSF given after salvage chemotherapy appear to be not different in their ability to mobilize PBSC resulting in a similar time needed for hematological reconstitution when autografted following high-dose therapy.  相似文献   

15.
One advantage of the use of peripheral blood stem cells (PBSCs) over autologous bone marrow would be a reduced risk of tumor cell contamination. However, the level of neoplastic cells in the PB of multiple myeloma (MM) patients after mobilization protocols is poorly investigated. In this study, we evaluated PB samples from 27 pretreated MM patients after the administration of high dose cyclophosphamide (7 g/m2 or 4 g/m2) and granulocyte-colony stimulating factor for the detection of myeloma cells as well as hematopoietic progenitors. Plasma cells containing intracytoplasmic lg were counted by microscope immunofluorescence after incubation with appropriate antisera directed against light- and heavy-chain lg. Moreover, flow cytometry studies were performed to determine the presence of malignant B-lineage elements by using monoclonal antibodies against the CD19 antigen and the monotypic light chain. Before initiation of PBSC mobilization, circulating plasma cells were detected in all MM patients in a percentage ranging from 0.1% to 1.8% of the mononuclear cell fraction (mean value, 0.7% +/- 0.4% SD). In these patients, a higher absolute number of PB neoplastic cells was detected after chemotherapy and granulocyte colony-stimulating factor. Kinetic analysis showed a pattern of tumor cell mobilization similar to that of normal hematopoietic progenitors with a maximum peak falling within the optimal time period for the collection of PBSCs. The absolute number of plasma cells showed a 10 to 50-fold increase as compared with the baseline value. Apheresis products contained 0.7% +/- 0.2% SD of myeloma cells (range, 0.2% to 2.7%). Twenty-three MM patients were submitted to PBSC collection. In 10 patients, circulating hematopoietic CD34+ cells were highly enriched by avidin-biotin immunoabsorption, were cryopreserved, and used to reconstitute bone marrow function after myeloablative therapy. The median purity of the enriched CD34+ cell population was 89.5% (range, 51% to 94%), with a 75-fold increase as compared with the pretreatment samples. The median overall recovery of CD34+ cells and colony-forming unit-granulocyte-macrophage was 58% (range, 33% to 95%) and 45% (range, 7% to 100%), respectively. Positive selection of CD34+ cells resulted in 2.5- to 3-log depletion of plasma cells and CD19+ B-lineage cells as determined by immunofluorescence studies, although DNA analysis of CDR III region of IgH gene showed the persistence of minimal residual disease in 5 of 6 patient samples studied. Myeloma patients were reinfused with enriched CD34+ cells after myeloablative therapy consisting of total body irradiation (1,000 cGy) and highdose melphalan (140 mg/m2). They received a median of 4 x 10(6) CD34+ cells/kg and showed a rapid reconstitution of hematopoiesis; the median time to 0.5 x 10(9) neutrophils and to 20 and 50 x 10(9) platelets per liter of PB was 10, 11, and 12 days, respectively. These results, as well as other clinically significant parameters, did not significantly differ from those of patients (n = 13) receiving unmanipulated PBSCs after the same pretransplant conditioning regimen. In summary, our data show the concomitant mobilization of tumor cells and hematopoietic progenitors in the PB of MM patients. Positive selection of CD34+ cells reduces the contamination of myeloma cells from the apheresis products up to 3-log and provides a cell suspension capable of restoring a normal hematopoiesis after a total body irradiation-containing conditioning regimen.  相似文献   

16.
Ex vivo T cell depletion of allogeneic grafts is associated with a high (up to 80%) rate of mixed chimerism (MC) posttransplantation. The number of transplanted progenitor cells is an important factor in achieving complete donor chimerism in the T cell depletion setting. Use of granulocyte colony-stimulating factor (G-CSF) peripheral blood allografts allows the administration of large numbers of CD34+ cells. We studied the chimeric status of 13 patients who received allogeneic CD34+-selected peripheral blood progenitor cell transplants (allo-PBPCTs/CD34+) from HLA-identical sibling donors. Patients were conditioned with cyclophosphamide (120 mg/kg) and total-body irradiation (13 Gy in four fractions). Apheresis products were T cell-depleted by the immunoadsorption avidin-biotin method. The median number of CD34+ and CD3+ cells infused was 2.8x10(6)/kg (range 1.9-8.6x10(6)/kg) and 0.4x10(6)/kg (range 0.3-1x10(6)/kg), respectively. Molecular analysis of the engraftment was performed using polymerase chain reaction (PCR) amplification of highly polymorphic short tandem repeat (PCR-STR) sequences in peripheral blood samples. MC was detected in two (15%) of 13 patients. These two patients relapsed at 8 and 10 months after transplant, respectively. The remaining 11 patients showed complete donor chimerism and were in clinical remission after a maximum follow-up period of 24 months (range 6-24 months). These results were compared with those obtained in 10 patients who were treated with T cell-depleted bone marrow transplantation by means of elutriation and who received the same conditioning treatment and similar amounts of CD3+ cells (median 0.45x10(6)/kg; not significant) but a lower number of CD34+ cells (median 0.8x10(6)/kg; p = 0.001). MC was documented in six of 10 patients (60%), which was significantly higher than in the allo-PBPCT/CD34+ group (p = 0.04). We conclude that a high frequency of complete donor chimerism is achieved in patients receiving allo-PBPCT/CD34+ and that this is most likely due to the high number of progenitor cells administered.  相似文献   

17.
In this article, we review neoplastic contamination in the peripheral blood (PB) of patients with multiple myeloma (MM) upon stem cell mobilization. We first evaluated PB samples from pretreated MM patients following administration of high-dose cyclophosphamide (Cy, 7 g/m2 or 4 g/m2) and granulocyte colony-stimulating factor (G-CSF) for the presence of myeloma cells as well as hematopoietic progenitors. Plasma cells containing intracytoplasmic immunoglobulin (cIg) were counted by immunofluorescence microscopy after incubation with appropriate antisera against light and heavy chain Ig. Flow cytometry studies were performed to determine the presence of malignant B lineage elements, using monoclonal antibodies against the CD19 antigen and the monotypic light chain. Prior to PBSC mobilization, circulating plasma cells were detected in all MM patients at 0.1%-1.8% of the mononuclear cell (MNC) fraction (mean value 0.7 +/- 0.4% SD). In these patients, a higher absolute number of PB neoplastic cells was detected after administration of chemotherapy and G-CSF. Kinetic analysis showed a pattern of tumor cell mobilization similar to that of normal hematopoietic progenitors, with the peak coinciding with the optimal period for the collection of PBSC. The absolute number of plasma cells showed a 10-50-fold increase over the baseline value. Apheresis products contained 0.7 +/- 0.2% SD myeloma cells (range 0.2%-2.7%), which demonstrated the capacity of plasma cells to proliferate, differentiate, and mature in response to c-kit ligand (SCF), IL-3, IL-6, and a combination of IL-3 and IL-6. Subsequently, in an attempt to reduce tumor cell contamination prior to autologous transplantation, circulating hematopoietic CD34+ cells were highly enriched by avidin-biotin immunoabsorption, cryopreserved, and used to reconstitute bone marrow (BM) function after myeloablative therapy in 13 patients. The median purity of the enriched CD34+ cell population was 89.5% (range 51%-94%), with a 75-fold enrichment compared with the pretreatment samples. The median overall recovery of CD34+ cells and CFU-GM was 58% (range 33%-95%) and 45% (range 7%-100%), respectively. Positive selection of CD34+ cells resulted in 2.5-3 log depletion of plasma cells and CD 19+ B lineage cells as determined by immunofluorescence studies, although DNA analysis of the CDR III region of the IgH gene demonstrated the persistence of minimal residual disease (MRD) in 5 of 6 patient samples studied. Myeloma patients were reinfused with enriched CD34+ cells after myeloablative therapy consisting of total body irradiation (TBI, 1000 cGy) and high-dose melphalan (140 mg/m2) or melphalan (200 mg/m2) alone. They received a median of 5 x 10(6) CD34+ cells/kg and showed a rapid reconstitution of hematopoiesis. The median time to 0.5 x 10(9) neutrophils, 20 x 10(9) and 50 x 10(9) platelets/L of PB was 10, 11, and 12 days, respectively. These results, as well as other clinically significant parameters, did not significantly differ from those of patients (n = 13) receiving unmanipulated PBSC following the same pretransplant conditioning regimen. Our data demonstrate the concomitant mobilization of tumor cells and hematopoietic progenitors in the PB of MM patients. Positive selection of CD34+ cells reduces the contamination of myeloma cells from the apheresis products up to 3 log and provides a cell suspension capable of restoring normal hematopoiesis following a TBI-containing conditioning regimen.  相似文献   

18.
We examined the efficiency of disease-specific "standard" chemotherapies epirubicin, cyclophosphamide (EC); cyclophosphamide, vincristine, doxorubicin, etoposide, prednisolone (CHOEP); epirubicin, ifosfamide (EPI/IFOS) for peripheral blood progenitor cell (PBPC) mobilization in comparison to well-characterized mobilization protocols, i.e. etoposide, ifosfamide, cisplatin, epirubicin (VIPE) and dexamethasone, carmustine, etoposide, cytarabine, melphalan (DexaBEAM). Twenty-seven patients with various malignancies underwent 75 apheresis procedures for PBPC collection. Median cell yields from all 75 aphereses were 1.18 x 10(5) mononuclear cells/kg [range (0.28-3.7) x 10)8)], 1.4 x 10(5) granulocyte/macrophage-colony-forming units (CFU-GM)/kg [range (0.2-11) x 10(5)] and 3.3 x 10(6) CD34+cells/kg [range (0.35-17.7) x 10(6). CD34+/ CD90+ cells could be mobilized by all mobilization regimens used. The difference observed in the mobilization of CD34+ cells was only of low significance when the mobilization regimens were compared, whereas the mobilizations of MNC and CFU-GM were significantly different between the groups. Breast cancer patients treated with the VIPE regimen (including pretreated women) had a significantly higher CFU-GM rate than patients treated with EC (P=0.0005). Mobilized CD34+ PBPC were correlated with CFU-GM in all apheresis products. The linear correlation coefficients differed for the various mobilization groups: DexaBEAM (r=0.9, P < 0.0001), VIPE (r=0.68, P=0.0024), CHOEP (r=0.52, P=0.022), EPI/ IFOS (r=0.34, P=0.11) and EC (r=0.23, P=0.2). We conclude that clonogenic assays can provide additional information about the autotransplant quality, particularly when alternative or new mobilization regimens are being investigated.  相似文献   

19.
To overcome the need for multiple leukaphereses to collect enough PBPC for autologous transplantation, large-volume leukaphereses (LVL) are used to process multiple blood volumes per session. We compared the efficiency of CD34+ cell collection by LVL (n = 63; median blood volumes processed 11.1) with that of standard-volume leukaphereses (SVL) (n = 38; median blood volumes processed 1.9). To achieve this in patients with different peripheral blood concentrations of CD34+ cells, we analyzed the ratio of CD34+ cells collected per unit of blood volume processed, divided by the number of CD34+ cells in total blood volume at the beginning of apheresis. For LVL, 30% (9%-323%) of circulating CD34+ cells were collected per blood volume compared with 42% (7%-144%) for SVL (p = 0.02). However, in LVL patients, peripheral blood CD34+ cells/L decreased a median of 54% during LVL (similar data for SVL not available). The number of CD34+ cells collected per blood volume processed after 4 and 8 blood volumes and at the end of LVL were 0.32 (0.01-2.05), 0.24 (0.01-1.68), and 0.22 (0.01-2.40) x 10(6) CD34+ cells/kg, respectively (p = 0.0007), despite the 54% decrease in peripheral blood CD34+ cells/L throughout LVL. A median 66% decrease in the platelet count was also observed during LVL. Thus, LVL may be more efficient than SVL for PBPC collection, allowing, in most patients, the collection in one LVL of sufficient PBPC to support autologous transplantation.  相似文献   

20.
The prognosis in patients with primary brain tumors treated with surgery, radiotherapy and conventional chemotherapy remains poor. To improve outcome, combination high-dose chemotherapy (HDC) has been explored in children, but rarely in adults. This study was performed to determine the tolerability of three-drug combination high-dose thiotepa (T) and etoposide (E)-based regimens in pediatric and adult patients with high-risk or recurrent primary brain tumors. Thirty-one patients (13 children and 18 adults) with brain tumors were treated with high-dose chemotherapy: 19 with BCNU (B) and TE (BTE regimen), and 12 with carboplatin (C) and TE (CTE regimen). Patients received growth factors and hematopoietic support with marrow (n = 15), peripheral blood progenitor cells (PBPC) (n = 11) or both (n = 5). The 100 day toxic mortality rate was 3% (1/31). Grade III/IV toxicities included mucositis (58%), hepatitis (39%) and diarrhea (42%). Five patients had seizures and two had transient encephalopathy (23%). All patients had neutropenic fever and all pediatric patients required hyperalimentation. Median time to engraftment with absolute neutrophil count (ANC) >0.5 x 10(9)/l was 11 days (range 8-37 days). Time to ANC engraftment was significantly longer (P = 0.0001) in patients receiving marrow (median 14 days, range 10-37) than for PBPC (median 9.5 days, range 8-10). Platelet engraftment >50 x 10(9)/l was 24 days (range 14-53 days) in children. In adults, platelet engraftment >20 x 10(9)/l was 12 days (range 9-65 days). In 11 patients supported with PBPC, there was a significant inverse correlation between CD34+ dose and days to ANC (rho = -0.87, P = 0.009) and platelet engraftment (rho = -0.85, P = 0.005), with CD34+ dose predicting time to engraftment following HDC. Overall, 30% of evaluable patients (7/24) had a complete response (CR) (n = 3) or partial response (PR) (n = 4). Median time to tumor progression (TTP) was 7 months, with an overall median survival of 12 months. These TE-based BCNU or carboplatin three-drug combination HDC regimens are safe and tolerable with promising response rates in both children and older adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号