首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on their ability to induce leukocyte chemotaxis and adhesion to endothelial cells (ECs), chemokines have been implicated in driving inflammatory leukocyte emigration. Recently, it was suggested that chemokines can accomplish their pro-emigratory role more effectively while being bound to the luminal surface of the ECs. Previously, such binding was demonstrated in situ in human skin for the prototype alpha-chemokine interleukin (IL)-8. Here we used an in situ binding assay to investigate the binding characteristics of several beta-chemokines in intact human skin. RANTES, MCP-1, and MCP-3 bound, similar to IL-8, in a specific saturable manner to the ECs of venules and small veins but not arteries or capillaries. RANTES inhibited MCP-1 and MCP-3 binding and vice versa, indicating that the EC binding sites are shared among these beta-chemokines; moreover, IL-8 and RANTES cross-competed for each other's binding, suggesting that the same chemokine binding sites are used by members of alpha- and beta-chemokine subfamilies. Conversely, MIP-1alpha did not bind to the ECs and did not compete for binding of RANTES. Analogous to IL-8, all of the tested beta-chemokines bound to the resident dermal cells. As a novel aspect of chemokine interaction with cells in normal skin, we observed specific, saturable binding of RANTES, MCP-1, and MCP-3 but not MIP-1alpha or IL-8 to the ECs of dermal afferent lymphatic vessels. RANTES, MCP-1, and MCP-3 also cross-competed for each other's binding to lymphatics, suggesting a common binding site with a novel chemokine binding profile. We suggest that the chemokine binding to the ECs of lymphatics may be involved in the process of leukocyte entry into the afferent lymphatic vessels.  相似文献   

2.
Herpes simplex virus type 1 (HSV-1) infection of the murine cornea results in a tissue-destructive inflammatory response. In this study we show that virus infection induces the synthesis of macrophage inflammatory protein-2 (MIP-2), MIP-1alpha, and monocyte chemoattractant protein-1 (MCP-1). However, only the production of MIP-2 and MIP-1alpha coincided with the influx of leukocytes into the cornea. IL-10 treatment markedly suppressed chemokine message and protein synthesis in vivo. Local administration of IL-10 also dramatically reduced the number of T cells and neutrophils migrating into the cornea and suppressed the severity of corneal disease. The inflammatory response could also be suppressed by the passive transfer of neutralizing antibody to MIP-1alpha but not MCP-1. We conclude that local IL-10 administration can suppress chemokine synthesis, thereby ameliorating corneal disease. Furthermore, our results indicate that MIP-1alpha plays a major role in herpes stromal keratitis development, whereas MCP-1 does not.  相似文献   

3.
C-C chemokines play an important role in recruitment of T lymphocytes to inflammatory sites. T lymphocytes secrete chemokines, but the activation requirements for chemokine production by T cells are uncertain. We studied the regulation of C-C chemokine production by CD28 costimulatory signals by murine T lymphocytes. Splenocytes from BALB/c mice cultured with anti-CD3 mAb expressed macrophage-inflammatory protein (MIP)-1alpha mRNA and secreted MIP-1alpha, which was inhibited by anti-B7-1 plus anti-B7-2 mAbs. MIP-1alpha production by Ag-stimulated T cells from DO.11.10 TCR transgenic mice was augmented by anti-CD28 mAb and increased compared with DO.11.10/CD28(-/-) cells. When T cell costimulation was provided by IL-2, MIP-1alpha was not enhanced. Studies with IL-2, IL-4, STAT4, and STAT6 knock-out mice suggested that chemokine production is controlled by pathways different from those regulating T cell differentiation. Thus, CD28 costimulation may amplify an immune response by stimulating T cell survival, proliferation, and production of chemokines that recruit T cells to inflammatory sites.  相似文献   

4.
We investigated the effect of TNF alpha, IL-1alpha and IFN gamma on two neuroblastoma (NB) cell lines (SK-N-SH and SK-N-MC). These lines responded differentially to IL-1alpha, TNF alpha and IFN gamma for MCP-1 and IL-8 production and expression of the ICAM-1 and VCAM-1 adhesion molecules. None of the cytokines induced MCP-1 or IL-8 on SK-N-MC cells. Both chemokines were produced in response to IL-1alpha by SK-N-SH cells, while TNF alpha induced mainly MCP-1 production. Addition of IFN gamma decreased IL-8, but not MCP-1 production. These responses correlated with monocyte and neutrophil chemotactic activity in NB culture supernatants. This activity was neutralized by antibodies to IL-8 and MCP-1. The expression of ICAM-1 on SK-N-MC was up-regulated by TNF alpha or IFN gamma, while IL-1alpha also upregulated ICAM-1 on SK-N-SH cells. VCAM-1 expression on SK-N-SH was induced by IL-1alpha and TNF alpha and IFN gamma synergized with TNF alpha in this respect on both NB cell lines. These results suggest that mechanisms for chemokine production and VCAM-1 and ICAM-1 upregulation by inflammatory cytokines differ and IFN gamma, in conjunction with TNF alpha, stimulate neural cell responses (high MCP-1 and VCAM-1 and decreased IL-8) favouring mononuclear cell recruitment.  相似文献   

5.
Lyme disease is clinically and histologically characterized by strong inflammatory reactions that contrast the paucity of spirochetes at lesional sites, indicating that borreliae induce mechanisms that amplify the inflammatory response. To reveal the underlying mechanisms of chemoattraction and activation of responding leukocytes, we investigated the induction of chemokines in human monocytes exposed to Borrelia burgdorferi by a dose-response and kinetic analysis. Lipopolysaccharide (LPS) derived from Escherichia coli was used as a positive control stimulus. The release of the CXC chemokines interleukin-8 (IL-8) and GRO-alpha and the CC chemokines MIP-1alpha, MCP-1, and RANTES was determined by specific enzyme-linked immunosorbent assays, and the corresponding gene expression patterns were determined by Northern blot analysis. The results showed a rapid and strong borrelia-inducible gene expression which was followed by the release of chemokines with peak levels after 12 to 16 h. Spirochetes and LPS were comparably effective in stimulating IL-8, GRO-alpha, MCP-1, and RANTES expression, whereas MIP-1alpha production preceded and exceeded chemokine levels induced by LPS. Unlike other bacteria, the spirochetes themselves did not bear or release factors with intrinsic chemotactic activity for monocytes or neutrophils. Thus, B. burgdorferi appears to be a strong inducer of chemokines which may, by the attraction and activation of phagocytic leukocytes, significantly contribute to inflammation and tissue damage observed in Lyme disease.  相似文献   

6.
The Duffy Antigen Receptor for Chemokines (DARC) belongs to a family of erythrocyte chemokine receptors that bind C-X-C and C-C chemokines such as interleukin 8 (IL-8), monocyte chemoattractant protein 1 (MCP-1) and regulated-on-activation, normal T cell-expressed and -secreted (RANTES), but not macrophage inflammatory protein 1 alpha (MIP-1 alpha) or MIP-1 beta. DARC has also been identified to a receptor for malaria parasites Plasmodium vivax and Plasmodium knowlesi. In the present study, we show that HIV-1 binds to RBCs from Caucasian individuals via DARC making RBCs able to transmit HIV to peripheral blood mononuclear cells (PBMCs). Furthermore, binding of HIV-1 particles to RBCs is inhibited by treating these cells with recombinant RANTES, but not with recombinant MIP-1 alpha prior to their incubation with HIV-1. This finding suggests that RBCs may function as a reservoir for HIV-1 or as a receptor for the entry of HIV-1 into CD4-cell subsets as well as neurons or endothelial cells.  相似文献   

7.
Although Mycobacterium tuberculosis is assumed to infect primarily alveolar macrophages after being aspirated into the lung in aerosol form, it is plausible to hypothesize that M. tuberculosis can come in contact with alveolar epithelial cells upon arrival into the alveolar space. Therefore, as a first step toward investigation of the interaction between M. tuberculosis and alveolar epithelial cells, we examined the ability of M. tuberculosis to bind to and invade alveolar epithelial cells in vitro. The H37Rv and H37Ra strains of M. tuberculosis were cultured to mid-log phase and used in both adherence and invasion assays. The A549 human type II alveolar cell line was cultured to confluence in RPMI 1640 supplemented with 5% fetal bovine serum, L-glutamine, and nonessential amino acids. H37Rv was more efficient in entering A549 cells than H37Ra, Mycobacterium avium, and Escherichia coli Hb101, and nonpiliated strain (4.7% +/- 1.0% of the initial inoculum in 2 h compared with 3.1% +/- 0.8%, 2.1% +/- 0.9%, and 0.03% +/- 0.0%, respectively). The invasion was more efficient at 37 degrees C than 30 degrees C (4.7% +/- 1.0% compared with 2.3% +/- 0.8%). H37Rv and H37Ra were both capable of multiplying intracellularly at a similar ration over 4 days. Binding was inhibited up to 55.7% by anti-CD51 antibody (antivitronectin receptor), up to 55% with anti-CD29 antibody (beta(1) integrin), and 79% with both antibodies used together. Update of M. tuberculosis H37Rv was microtubule and microfilament dependent. It was inhibited by 6l.4% in the presence of 10 micron colchicine and by 72.3% in the presence of 3 micron cytochalasin D, suggesting two separate pathways for uptake. Our results show that M. tuberculosis is capable of invading type II alveolar epithelial cells and raise the possibility that invasion of alveolar epithelial cells is associated with the pathogenesis of lung infection.  相似文献   

8.
9.
Chemokines (chemoattractant cytokines) attract and activate specific leukocyte subsets. With regard to their expression by brain parenchymal cells, they may represent the key molecules that control leukocyte entry into the subarachnoid space. In order to evaluate the contribution of chemokines in vivo, we determined the levels of MCP-1, MIP-1alpha, RANTES, IL-8, as well as of the sIL-2R in three patients with proven herpes simplex encephalitis type 1 (HSE-1). CSF samples were drawn by a subarachnoid catheter system throughout the time course of hospitalisation. Results were compared to chemokine levels in serum drawn in parallel. The clinical status was documented by the Modified Barthel Index and correlated with chemokine levels in the CSF. The results were compared with the chemokine levels in the CSF of 17 control patients with normal CSF routine parameters. High chemokine levels were detectable in the CSF of all HSE-patients. MCP-1 peak levels were found at the time of admission, while maximal IL-8 levels occurred 4 to 8 h later. The levels of MIP-1alpha and RANTES were lower than those of MCP-1 with a maximum at the time of admission. In all patients the levels of the sIL-2R increased later in the time course, at 14 to 20 h after admission. When the levels of MCP-1 were compared with the clinical status by Modified Barthel Index, we found a high reciprocal correlation (r=-0.82). Routine CSF parameters, such as leukocytes, albumin and immunoglobulins did not correlate with the clinical status. Chemokine levels in serum were found to be close to the detection limits of the ELISA systems. Our data suggest that chemokines play an important role in the pathogenesis of HSE. They may be useful parameters to monitor the stage and severity of the disease. The late increase of sIL2-R levels may indicate the beginning of the reconstitution phase.  相似文献   

10.
11.
We demonstrate here that the CC chemokines macrophage inflammatory protein-3alpha (MIP-3alpha), macrophage inflammatory protein-3beta (MIP-3beta) and the CX3C chemokine fractalkine induce the chemotaxis of interleukin-2 (IL-2)-activated natural killer (IANK) cells. In addition, these chemokines enhance the binding of [gamma-35S]guanine triphosphate ([gamma-35S]GTP) to IANK cell membranes, suggesting that receptors for these chemokines are G protein-coupled. Our results show that MIP-3alpha receptors are coupled to Go, Gq and Gz, MIP-3beta receptors are coupled to Gi, Gq and Gs, whereas fractalkine receptors are coupled to Gi, and Gz. All three chemokines induced a robust calcium response flux in IANK cells. Cross-desensitization experiments show that MIP-3alpha, MIP-3beta or fractalkine use receptors not shared by each other or by the CC chemokine regulated on activation, normal, T-cell expressed, and secreted (RANTES), the CXC chemokines stromal-derived factor-1alpha (SDF-1alpha) and interferon-inducible protein-10 (IP-10), or the C chemokine lymphotactin.  相似文献   

12.
Basophils and eosinophils can be activated in vitro by several chemokines such as RANTES, monocyte chemotactic and activating factor (MCAF/MCP-1), macrophage inflammatory peptide-1 alpha (MIP-1 alpha), and interleukin-8 (IL-8). To explore the clinical relevance of the in vitro observations, we measured here the concentrations of these chemokines in sputa from asthmatic patients during acute attacks. Before the onset of a late-phase exacerbation, sputum MCAF/MCP-1, MIP-1 alpha, and IL-8 levels transiently but markedly increased from the basal levels in all of the patients with exacerbation, whereas the sputum levels of these chemokines remained unchanged during the course in the patients without a late-phase exacerbation. These results suggest the involvement of these chemokines in the late-phase exacerbation of asthma.  相似文献   

13.
CCR5 is a chemokine receptor expressed by T cells and macrophages, which also functions as the principal coreceptor for macrophage (M)-tropic HIV-1 strains to enter the host cells. In this study, we aim to better understand the ligand-binding profiles of CCR5 and the chemokine-receptor usage on leukocyte cells. We found that MCP-2 could bind to CCR5 transfectants with high affinity and cross-compete effectively with RANTES, MIP-1alpha, and MIP-1beta. MCP-2 is a true agonist for CCR5, eliciting a robust chemotactic response in CCR5 transfectants similar to that of the three known CCR5 ligands and exhibiting cross-desensitization with RANTES in the Ca2+ flux response. MCP-4 also bound to CCR5 with high affinity and was efficiently displaced by other CCR5 ligands. However, MCP-4 only partially displaced the binding of radiolabeled MIP-1alpha and caused a chemotactic response only at high concentrations. Furthermore, MCP-2 inhibited the binding of the M-tropic HIV-1 gp120 envelope glycoprotein to CCR5 and HIV-1 infection of peripheral blood mononuclear cells. More importantly, we found that MCP-2 could bind and elicit chemotaxis in CD3-activated and IL-2-maintained T cells, and most of these functions could be specifically inhibited by the anti-CCR5 mAb 2D7, whereas the responses mediated by MIP-1alpha or MCP-4 were only partially inhibited by 2D7. Thus, although MCP-2 can bind to and signal through CCR1, CCR2b, and CCR5, among which both CCR2 and CCR5 are expressed at high levels on activated T cells, it appears to preferably utilize CCR5 on these cells. In contrast, MIP-1alpha and MCP-4 seem to activate multiple receptors on the same cells.  相似文献   

14.
Injury in non-neuronal tissues stimulates chemokine expression leading to recruitment of inflammatory cells responsible for orchestration of repair processes. The signals involved in directing repair of damage to the brain are less well understood. We hypothesized that following brain injury, chemokines are expressed and regulate the rate and pattern of inflammatory cell accumulation. The two chemokine subfamilies are alpha(alpha)-chemokines, which primarily function as neutrophil chemoattractants, and the beta(beta)-chemokines, which function primarily as monocyte chemoattractants. We assessed alpha and beta chemokine mRNA expression patterns and leukocyte accumulation following a cerebral cortical lesion. Cortical lesions were produced with and without addition of endotoxin, Escherichia coli lipopolysaccharide (LPS), which stimulates cytokine expression. We studied the expression of the beta-chemokines: monocyte chemoattractant protein (gene product JE; MCP-1/JE), macrophage inflammatory protein-1 alpha and beta (MIP-1alpha and MIP-1beta), and the regulated upon activation normal T expressed and secreted chemokine (RANTES) as well as the alpha-chemokines: interferon-gamma-inducible protein (IP-10) and N51/KC (KC; a murine homologue of MIP-2). Changes in gene expression were analyzed by Northern analysis at different time points following injury. Leukocyte and macrophage densities were analyzed by immunohistochemistry at the same time intervals. All chemokines were elevated following cortical injury/endotoxin. MCP-1 and MIP-1alpha were elevated at 2 h and peaked 6 h, MIP-1beta peaked at 6 h, but declined more rapidly than MCP-1 or MIP-1alpha, and IP-10 peaked at 6 h and showed the most rapid decline. KC was elevated at 1 h, and peaked at 6 h following LPS. RANTES was elevated at 1 h and achieved a plateau level between 6 and 18 h, then declined. In contrast, sterile injuries produced in the absence of endotoxin only induced the mRNA of the beta-chemokine MCP-1, and its expression was delayed compared to the cortical injury/endotoxin group. The presence of chemokine message as early as 1 h indicates that expression of this class of molecules is an early response in the repair process following traumatic brain injury. Macrophage/microglia accumulation occurred more rapidly, activated microglia further from the lesion border, and more cells accumulated in cortical injury/endotoxin than in cortical lesions produced under sterile conditions. Thus, there was a positive correlation between beta-chemokine expression and the number of beta-chemokine responsive cells (i.e. microglia) accumulating in injury sites. This is the first comprehensive study using a panel of chemokine probes and specific marcophage/microglial markers to study in vivo activation of the brain following injury. Our data show that the brain is capable of expression of multiple chemokine genes upon appropriate stimulation (e.g. LPS-treatment). The gradient of microglial activation is consistent with physical damage stimulating release of chemokines that diffuse from the injury site. These data strongly suggest that chemokines are instrumental in the initiation of repair processes following brain injury.  相似文献   

15.
Activation of complement in the vicinity of endothelium is thought to contribute to the tissue manifestations of inflammatory and immune responses. Endothelial cells contribute to these processes in part by the elaboration of chemokines that activate various leukocytes and direct their migration into tissues. We investigated the mechanisms by which activation of complement on endothelial cell surfaces might influence the expression of chemokine genes in endothelial cells. In a model for the immune reaction occurring in a xenograft, human serum, as a source of xenoreactive anti-endothelial Abs and complement, induced expression of the monocyte chemotactic protein-1 (MCP-1), IL-8, and RANTES genes. The MCP-1 and IL-8 genes were expressed within 3 h as a first phase and at > 12 h as a second phase. The RANTES gene was expressed in porcine endothelial cells only 12 h after exposure to human serum. The expression of these genes required activation of complement and assembly of membrane attack complex, as it was inhibited by soluble CR1 and did not occur in the absence of C8. The early phase of MCP-1 and IL-8 gene expression did not require de novo protein synthesis. The late phase of MCP-1, IL-8, and RANTES gene expression predominantly required the production of IL-1alpha as an intermediate step. The results indicate that the expression of chemokine genes in endothelial cells occurs as a function of differential responses to complement and may in part be conditioned by the availability of IL-1alpha.  相似文献   

16.
Polymicrobial sepsis induced by cecal ligation and puncture (CLP) reproduces many of the pathophysiologic features of septic shock. In this study, we demonstrate that mRNA for a broad range of pro- and anti-inflammatory cytokine and chemokine genes are temporally regulated after CLP in the lung and liver. We also assessed whether prophylactic administration of monophosphoryl lipid A (MPL), a nontoxic derivative of lipopolysaccharide (LPS) that induces endotoxin tolerance and attenuates the sepsis syndrome in mice after CLP, would alter tissue-specific gene expression post-CLP. Levels of pulmonary interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-alpha), granulocyte colony-stimulating factor (G-CSF), IL-1 receptor antagonist (IL-1ra), and IL-10 mRNA, as well as hepatic IL-1beta, IL-6, gamma interferon (IFN-gamma), G-CSF, inducible nitric oxide synthase, and IL-10 mRNA, were reduced in MPL-pretreated mice after CLP compared to control mice. Chemokine mRNA expression was also profoundly mitigated in MPL-pretreated mice after CLP. Specifically, levels of pulmonary and hepatic macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, MIP-2, and monocyte chemoattractant protein-1 (MCP-1) mRNA, as well as hepatic IFN-gamma-inducible protein 10 and KC mRNA, were attenuated in MPL-pretreated mice after CLP. Attenuated levels of IL-6, TNF-alpha, MCP-1, MIP-1alpha, and MIP-2 in serum also were observed in MPL-pretreated mice after CLP. Diminished pulmonary chemokine mRNA production was associated with reduced neutrophil margination and pulmonary myeloperoxidase activity. These data suggest that prophylactic administration of MPL mitigates the sepsis syndrome by reducing chemokine production and the recruitment of inflammatory cells into tissues, thereby attenuating the production of proinflammatory cytokines.  相似文献   

17.
The effect of anticoagulant (heparin vs EDTA) on chemokine induced CD11b upregulation on neutrophils, eosinophils, and monocytes in human whole blood was determined. For most of the chemokines (IL-8, GRO-alpha, MCP-1, MIP-1 alpha) the difference in the response of leukocytes in EDTA anticoagulated blood vs those in heparinized blood was the degree of their maximal response, with a slightly higher maximal increase in CD11b expression usually seen in cells from EDTA anticoagulated blood. Two chemokines were exceptions to this: RANTES and MIP-1 beta. RANTES is considered to be a stimulator of monocytes and eosinophils and not of neutrophils. As expected, neutrophils in heparinized whole blood did not respond to RANTES; however, neutrophils in EDTA anticoagulated blood had a significant increase in CD11b when exposed to high concentrations (1 microM) of RANTES. RANTES-induced CD11b expression on monocytes and eosinophils in these samples were the same in either heparin or EDTA. In EDTA anticoagulated blood, MIP-1 beta did not elicit a response in either monocytes, eosinophils or neutrophils; however, in heparinized blood, all three cell types increased CD11b expression upon exposure to 1 microM MIP-1 beta.  相似文献   

18.
19.
The CC chemokines MIP-1alpha, MIP-1beta, and RANTES suppress replication of certain HIV-1 strains in cultured PBMC and T cell lines by blocking interaction of gp120 with CC chemokine receptor 5 (CCR5). However, the same chemokines can enhance HIV-1 replication in cultured macrophages. The net effect of chemokines on HIV-1 infection in intact lymphoid tissue, the major reservoir of HIV-1 in vivo, is unknown and unpredictable since the tissue contains both T lymphocytes and macrophages. Here we show that exogenous MIP-1alpha, MIP-1beta, and RANTES markedly suppressed replication of CCR5-tropic HIV-1 strains in blocks of human lymphoid tissue infected ex vivo. Moreover, endogenous MIP-1alpha, MIP-1beta, and RANTES were upregulated in tissues infected ex vivo with CXC chemokine receptor 4-tropic but not CCR5-tropic HIV-1. Such an upregulation may contribute to the virus phenotype shift in the course of HIV disease in vivo.  相似文献   

20.
Under a variety of conditions, alveolar macrophages can generate early response cytokines (TNF-alpha, IL-1), complement components, and chemotactic cytokines (chemokines). In the current studies, we determined the requirements for TNF-alpha and the complement activation product C5a in chemokine production in vitro and in vivo. Two rat CXC chemokines (macrophage inflammatory protein (MIP)-2 and cytokine-induced neutrophil chemoattractant (CINC)) as well as three rat CC chemokines (MIP-1alpha, MIP-1beta, and monocyte chemoattractant protein (MCP)-1) were investigated. Chemokine generation in vitro was studied in rat alveolar macrophages stimulated with IgG immune complexes in the absence or presence of Abs to TNF-alpha or C5a. The rat lung injury model induced by IgG immune complex deposition was employed for in vivo studies. Abs to TNF-alpha or C5a were administered intratracheally or i.v., and effects on chemokine levels in bronchoalveolar lavage fluids were quantitated by ELISA. Both in vitro and in vivo studies demonstrated the requirements for TNF-alpha and C5a for full generation of CXC and CC chemokines. In vitro and in vivo blockade of TNF-alpha or C5a resulted in significantly reduced production of chemokines. Supernatant fluids from in vitro-stimulated macrophages revealed by Western blot analysis the presence of C5a/C5adesArg, indicating intrinsic generation of C5a/C5adesArg by alveolar macrophages and explaining the higher efficiency of intratracheal vs i.v. blockade of C5a in reducing chemokine production. These results underscore the central role of both TNF-alpha and C5a, which appear to function as autocrine activators to promote CXC and CC chemokine generation by alveolar macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号