首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Based on the Wilson equation, extended Miedema model, and hard sphere theory, new models are developed theoretically only using the quantities of the pure component and are applied to investigate the thermodynamical and kinetic effect of alloying additions on in-situ AlN formation via displacement reaction in Mg-Al alloy melt. The results show that the alloying additions such as Si, Zn, and Cu can promote the formation of AlN in Mg-Al melt both in thermodynamics and kinetics. Meanwhile, other elements, including Mn, Nd, Ce, Ni, and La, must be matched properly in order to produce the desired reinforcement AlN in liquid Mg-Al melt.  相似文献   

3.
Braided tubes of Ni-based superalloys are fabricated via three-dimensional (3-D) braiding of ductile Ni-20Cr (wt pct) wires followed by post-textile gas-phase alloying with Al and Ti to create, after homogenization and aging, γ/γ′ strengthened lightweight, porous structures. Tensile tests reveal an increase in strength by 100 MPa compared to as-braided Ni-20Cr (wt pct). An interrupted tensile test, combined with X-ray tomographic scans between each step, sheds light on the failure behavior of the braided superalloy tubes.  相似文献   

4.
A prime objective in the development of crystal dislocation theory has been, and at any rate should be, constitutive equations for practical use in the metal forming industry. Protracted controversies regarding workhardening theory have frustrated this goal for the past seven decades. They are fueled by the paradox that plastic deformation is a prime example for the second law of thermodynamics in converting mechanical work into heat with good efficiency, even while in seeming opposition to the second law it typically raises the internal energy of the deformed material. The low-energy dislocation structures (LEDS) theory resolves this difficulty by showing that, as always in inanimate nature, so also plastic deformation proceeds close to minimum free energy. Indeed recent evidence based on deformation band structures proves that plastic deformation typically proceeds very close to minimum energy among the accessible configurations. While plastic strain raises the flow stress, in ductile crystalline materials mostly through generating dislocation structures, but also through twins, kink bands, microcracks and others, Newton’s third law, i.e., force equilibrium, is always stringently obeyed. Therefore, deformation dislocation structures are in thermal equilibrium as long as the stress that generated them remains in place. Based on this concept of free energy minimization, the LEDS theory has long since explained, at least semiquantitatively, all significant aspects of metal strength and deformation, as well as the effects of heat treatments. The LEDS theory is the special case, namely, as pertaining to dislocation structures, of the more general low-energy structures (LEDS) theory that governs all types of deformation independent of the deformation mechanism, and that operates in all types of materials, including plastics.  相似文献   

5.
6.
The effect of annealing treatment on microstructure, fracture toughness, and tensile and compression behavior of a cryomilled Al-7.5 pct Mg alloy was investigated in the present study. Inspection of the mechanical performance reveals that there is a significant effect of annealing on fracture toughness and ductility. After annealing treatment, the value of fracture toughness increases from 8.3 to 17.5 MPa , and the value of ductility increases from 4.4 to 14 pct, while the decrease of strength is slight. The improvement of ductility and toughness is attributed to the existence of lamellar coarsegrain bands that effectively blunt the crack tip and slow propagation. These bands have widths of approximately 500 nm and are parallel to the extrusion direction. They were produced in the microstructure, which has a typical grain size of approximately 260 nm as a result of the annealing at 773 K.  相似文献   

7.
Crystal structures of room-temperature ionic liquid (RTIL)-H2O mixtures are determined by the X-ray diffraction method. The RTIL is N,N-diethyl-N-methyl-N-2-methoxyethyl ammonium tetrafluoroborate, [DEME][BF4]. At 0.9 mol pct H2O, two kinds of superstructures occur simultaneously without a strain. Also, the volume of the unit cell is very small only at 0.9 mol pct additives. This relates to the composite domain structure, including a twin-related one, as an elastic anomaly. At other water concentrations, such an extraordinary behavior is not observable. By assuming a sublattice having an equivalent lattice constant, a water network at 1 mol pct H2O is simulated using a Monte Carlo (MC) method. The network develops over the medium range in the simulation box.  相似文献   

8.
A prime objective in the development of crystal dislocation theory has been, and at any rate should be, constitutive equations for practical use in the metal forming industry. Protracted controversies regarding workhardening theory have frustrated this goal for the past seven decades. The are fueled by the paradox that plastic deformation is a prime example for the second law of thermodynamics in converting mechanical work into heat with good efficiency, even while in seeming opposition to the second law it typically raises the internal energy of the deformed material. The low-energy dislocation structures (LEDS) theory resolves this difficulty by showing that, as always in inanimate nature, so also plastic deformation proceeds close to minimum free energy. Indeed recent evidence based on deformation band structures proves that plastic deformation typically proceeds very close to minimum energy among the accessible configurations. White plastic strain raises the flow stress, in ductile crystalline materials mostly through generating dislocation structures, but also through twins, kink bands, microcracks and others, Newton’s third law, i.e., force equilibrium, is always stringently obeyed. Therefore, deformation dislocation structures are in thermal equilibrium as long as the stress that generated them remains in place. Based on this concept of free energy minimization, the LEDS theory has long since explained, at least semiquantitatively, all significant aspects of metal strength and deformation, as well as the effects of heat treatments. The LEDS theory is the special case, namely, as pertaining to dislocation structures, of the more general low-energy structures (LEDS) theory that governs all types of deformation independent of the deformation mechanism, and that operates in all types of materials, including plastics.  相似文献   

9.
A Nb-stabilized Fe-15Cr-0.45Nb-0.010C-0.015N ferritic stainless steel is studied with transmission electron microscopy (TEM) to investigate the morphology and kinetics of precipitation. Nbx(C,N)y\hbox{Nb}_{x}\hbox{(C,N)}_y and MnS precipitates are present in the steel in the initial condition. Ex-situ TEM analysis is performed on samples heat treated at 973 K, 1073 K, 1173 K, and 1273 K (700 °C, 800 °C, 900 °C, and 1000 °C). Within this temperature range, both Fe2Nb\hbox{Fe}_2\hbox{Nb} and Fe3Nb3Xx\hbox{Fe}_{3}\hbox{Nb}_{3}\hbox{X}_{x} (with X = C or N) precipitates form. Fe2\hbox{Fe}_2Nb is observed at 1073 K (800 °C).   Fe3Nb3Xx\;\hbox{Fe}_{3}\hbox{Nb}_{3}\hbox{X}_{x} precipitates form at the grain boundaries between 973 K and 1273 K (700 °C and 1000 °C). Up to at least 1173 K (900 °C) their fraction increases with time and temperature, but at 1273 K (1000 °C) they lose stability with respect to Nbx(C,N)y.\hbox{Nb}_{x}\hbox{(C,N)}_{y}. With in-situ TEM, no phase transition is observed between room temperature and 1243 K (970 °C). At 1243 K (970 °C) the precipitation of Fe3Nb3Xx\hbox{Fe}_{3}\hbox{Nb}_{3}\hbox{X}_{x} is observed in the neighborhood of a dissolving Nb2\hbox{Nb}_2(C,N) precipitate. For sections of grain boundaries where no Nbx(C,N)y\hbox{Nb}_x\hbox{(C,N)}_y precipitates are present, Fe3Nb3Xx\hbox{Fe}_3\hbox{Nb}_3\hbox{X}_{x} does not form. It is concluded that the precipitation of Fe3Nb3Xx\hbox{Fe}_{3}\hbox{Nb}_{3}\hbox{X}_x is directly related to the dissolution of Nb2\hbox{Nb}_2(C,N) through the redistribution of C or N.  相似文献   

10.
Ferrous alloys are important raw materials for special steel production. In this context, alloys from the Fe-Cr system, with typical Cr weight fraction ranging from 0.45 to 0.95, are prominent, particularly for the stainless steel industry. During the process in which these alloys are obtained, there is considerable production of fine powder, which could be reused after suitable chemical treatment, for example, through coupling pyrometallurgical and hydrometallurgical processes. In the present study, the extraction of chromium from fine powder generated during the production of a Fe-Cr alloy with high C content was investigated. Roasting reactions were performed at 1073 K, 1173 K, and 1273 K (800 °C, 900 °C, and 1000 °C) with 300 pct (w/w) excess NaOH in an oxidizing atmosphere (air), followed by solubilization in deionized water, selective precipitation, and subsequent calcination at 1173 K (900 °C) in order to convert the obtained chromium hydroxide to Cr2O3. The maximum achieved Cr recovery was around 86 pct, suggesting that the proposed chemical route was satisfactory regarding the extraction of the chromium initially present. Moreover, after X-ray diffraction analysis, the final produced oxide has proven to be pure Cr2O3 with a mean crystallite size of 200 nm.  相似文献   

11.
A formula is derived to accurately describe the tabulated relation between the Brinell (HB) and Vickers (HV) hardnesses of steel over the entire range of their possible variation. This formula and the formulas describing the relation between the HB hardness of chromium–molybdenum and chromium–nickel steels and their ultimate tensile strength σu are used to analyze the change in σu of 38KhNM steel upon quenching and tempering. The data that reveal a relation between σu of 38KhNM steel and its coercive force are obtained.  相似文献   

12.
Grade A ship-building steel-AISI 2304 duplex stainless steel composite plates were manufactured via explosive welding. The AISI 2304 plates were used to clad the Grade A plates. Optical microscopy studies were conducted on the joining interface for characterization of the manufactured composite plates. Notch impact, tensile-shear, microhardness, bending and twisting tests were carried out to determine the mechanical properties of the composites. In addition, the surfaces of fractured samples were examined by scanning electron microscopy (SEM), and neutral salt spray (NSS) and potentiodynamic polarization tests were performed to examine corrosion behavior. Near the explosion zone, the interface was completely flat, but became wavy as the distance from the explosion zone increased. The notch impact tests indicated that the impact strength of the composites decreased with increasing distance from the explosion zone. The SEM studies detected brittle behavior below the impact transition temperature and ductile behavior above this temperature. Microhardness tests revealed that the hardness values increased with increasing distance from the explosion zone and mechanical tests showed that no visible cracking or separation had occurred on the joining interface. The NSS and potentiodynamic polarization tests determined that the AISI 2304 exhibited higher corrosion resistance than the Grade A steel.  相似文献   

13.
14.
Better understanding of agglomeration behavior of nonmetallic inclusions in the steelmaking process is important to control the cleanliness of the steel. In this work, a revision on the Paunov simplified model has been made according to the original Kralchevsky–Paunov model. Thus, this model has been applied to quantitatively calculate the attractive capillary force on inclusions agglomerating at the liquid steel/gas interface. Moreover, the agglomeration behavior of Al2O3 inclusions at a low carbon steel/Ar interface has been observed in situ by high-temperature confocal laser scanning microscopy (CLSM). The velocity and acceleration of inclusions and attractive forces between Al2O3 inclusions of various sizes were calculated based on the CLSM video. The results calculated using the revised model offered a reasonable fit with the present experimental data for different inclusion sizes. Moreover, a quantitative comparison was made between calculations using the equivalent radius of a circle and those using the effective radius. It was found that the calculated capillary force using equivalent radius offered a better fit with the present experimental data because of the inclusion characteristics. Comparing these results with other studies in the literature allowed the authors to conclude that when applied in capillary force calculations, the equivalent radius is more suitable for inclusions with large size and irregular shape, and the effective radius is more appropriate for inclusions with small size or a large shape factor. Using this model, the effect of inclusion size on attractive capillary force has been investigated, demonstrating that larger inclusions are more strongly attracted.  相似文献   

15.
A combined experimental/computational approach is employed to study slip-system-related dislocation-substructure formation during uniaxial tension of a single-phase, face-centered-cubic (fcc), nickel-based alloy. In-situ neutron-diffraction measurements were conducted to monitor the peak-intensity, peak-position, and peak-broadening evolution during a displacement-controlled, monotonic-tension experiment at room temperature. The measured lattice-strain evolution and the macrostress/macrostrain curves were used to obtain the material parameters required for simulating the texture development by a visco-plastic self-consistent (VPSC) model. The simulated texture compared favorably with experimentally-determined texture results over a range of 0 to 30 pct engineering strain. The grain-orientation-dependent input into the Debye-intensity ring was considered. Grains favorably oriented relative to the two detector banks in the geometry of the neutron experiment were indicated. For the favorably oriented grains, the simulated slip-system activity was used to calculate the slip-system-dependent, dislocation-contrast factor. The combination of the calculated contrast factor with the experimentally-measured peak broadening allows the assessment of the parameters of the dislocation arrangement within the specifically oriented grains, which has a quantitative agreement with the transmission-electron-microscopy results. This article is based on a presentation given in the symposium entitled “Neutron and X-Ray Studies for Probing Materials Behavior,” which occurred during the TMS Spring Meeting in New Orleans, LA, March 9–13, 2008, under the auspices of the National Science Foundation, TMS, the TMS Structural Materials Division, and the TMS Advanced Characterization, Testing, and Simulation Committee.
Rozaliya Barabash (Research Professor)Email:
  相似文献   

16.
In the present work, functionally graded (FG) aluminum alloy matrix in-situ composites (FG-AMCs) with TiB2 and TiC reinforcements were synthesized using the horizontal centrifugal casting process. A commercial Al-Si alloy (A356) and an Al-Cu alloy were used as matrices in the present study. The material parameters (such as matrix and reinforcement type) and process parameters (such as mold temperature, mold speed, and melt stirring) were found to influence the gradient in the FG-AMCs. Detailed microstructural analysis of the composites in different processing conditions revealed that the gradients in the reinforcement modify the microstructure and hardness of the Al alloy. The segregated in-situ formed TiB2 and TiC particles change the morphology of Si particles during the solidification of Al-Si alloy. A maximum of 20 vol pct of reinforcement at the surface was achieved by this process in the Al-4Cu-TiB2 system. The stirring of the melt before pouring causes the reinforcement particles to segregate at the periphery of the casting, while in the absence of such stirring, the particles are segregated at the interior of the casting.  相似文献   

17.
18.
19.
Quick preheating treatment of the Al-Ti-C pellets and high-intensity ultrasonic vibration are introduced in the fabrication of in-situ TiC p /Mg composites. Al-Ti-C pellets are preheated for about 130 seconds in the furnace at 1023 K (750 °C), in which magnesium is melted as well. In this process, plenty of heat can be accumulated due to the reactive diffusion between liquid aluminum and solid titanium in Al-Ti-C, and a small amount of Al3Ti phase is formed as well. After adding the preheated Al-Ti-C into the molten magnesium, thermal explosion takes place in a few seconds. In the meantime, high-intensity ultrasonic vibration is applied into the melt to disperse in-situ formed TiC particles into the matrix and degas the melt as well. Microstructural characterization indicates that in-situ formed TiC particles are spherical in morphology and smaller than 2 μm in size. Furthermore, a homogeneous microstructure with low porosity of the magnesium composite is obtained due to the effect of ultrasonic vibration. A novel approach using the quick preheating treatment technique and high-intensity ultrasonic vibration to synthesize in-situ TiC p /Mg composites is proposed in our research.  相似文献   

20.
A combination of electron channeling contrast (ECC) and electron backscatter diffraction pattern (EBSP) techniques has been used to follow in situ the migration during annealing at 323 K (50 °C) of a recrystallizing boundary through the deformed matrix of high-purity aluminum rolled to 86 pct reduction in thickness. The combination of ECC and EBSP techniques allows both detailed measurements of crystallographic orientations to be made, as well as tracking of the boundary migration with good temporal resolution. The measured boundary velocity and the local boundary morphology are analyzed based on calculations of local values for the stored energy of deformation. It is found that the migration of the investigated boundary is very complex with significant spatial and temporal variations in its movement, which cannot directly be explained by the variations in stored energies, but that these variations relate closely to local variations within the deformed microstructure ahead of the boundary, and are found related to the local spatial arrangements and misorientations of the dislocation boundaries. The results of the investigation suggest that local analysis, on the micrometer length scale, is necessary for the further understanding of recrystallization boundary migration mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号