首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Delineation of tumor margins is a critical and challenging objective during brain cancer surgery. A tumor-targeting deep-blue nanoparticle-based visible contrast agent is described, which, for the first time, offers in vivo tumor-specific visible color staining. This technology thus enables color-guided tumor resection in real time, with no need for extra equipment or special lighting conditions. The visual contrast agent consists of polyacrylamide nanoparticles covalently linked to Coomassie Blue molecules (for nonleachable blue color contrast), which are surface-conjugated with polyethylene glycol and F3 peptides for efficient in vivo circulation and tumor targeting, respectively.  相似文献   

2.
As a hybrid imaging technique, photoacoustic imaging (PAI) can provide multiscale morphological information of tissues, and the use of multi-spectral PAI (MSPAI) can recover the spatial distribution of chromophores of interest, such as hemoglobin within tissues. Herein, we developed a contrast agent that can very effectively combine multiscale PAI with MSPAI for a more comprehensive characterization of complex biological tissues. Specifically, we developed novel PIID-DTBT based semi-conducting polymer dots (Pdots) that show broad and strong optical absorption in the visible-light region (500–700 nm). The performances of gold nanoparticles (GNPs) and gold nanorods (GNRs), which have been verified as excellent photoacoustic contrast agents, were compared with that of the Pdots based on the multiscale PAI system. Both ex vivo and in vivo experiments demonstrated that the Pdots have better photoacoustic conversion efficiency at 532 nm than GNPs and showed similar photoacoustic performance with GNRs at 700 nm at the same mass concentration. Photostability and toxicity tests demonstrated that the Pdots are photostable and biocompatible. More importantly, an in vivo MSPAI experiment indicated that the Pdots have better photoacoustic performance than the blood and therefore the signals can be accurately extracted from the background of vascular-rich tissues. Our work demonstrates the great potential of Pdots as highly effective contrast agents for the precise localization of lesions relative to the blood vessels based on multiscale PAI and MSPAI.
  相似文献   

3.
Necrosis is a form of cell death that occurs only under pathological conditions such as ischemic diseases and traumatic brain injury (TBI). Non-invasive imaging of the affected tissue is a key component of novel therapeutic interventions and measurement of treatment responses in patients. Here, we report a bimodal approach for the detection and monitoring of TBI. PEGylated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), encapsulating both near infrared (NIR) fluorophores and perfluorocarbons (PFCs), were targeted to necrotic cells. We used cyanine dyes such as IRDye 800CW, for which we have previously demonstrated specific targeting to intracellular proteins of cells that have lost membrane integrity. Here, we show specific in vivo detection of necrosis by optical imaging and fluorine magnetic resonance imaging (19F MRI) using newly designed PLGA NP(NIR700 + PFC)-PEG-800CW. Quantitative ex vivo optical imaging and 19F MR spectroscopy of NIR-PFC content in injured brain regions and in major organs were well correlated. Both modalities allowed the in vivo identification of necrotic brain lesions in a mouse model of TBI, with optical imaging being more sensitive than 19F MRI. Our results confirm increased blood pool residence time of PLGA NPs coated with a PEG layer and the successful targeting of TBI-damaged tissue. A single PLGA NP containing NIR-PFC enables both rapid qualitative optical monitoring of the TBI state and quantitative 3D information from deeper tissues on the extent of the lesion by MRI. These necrosis-targeting PLGA NPs can potentially be used for clinical diagnosis of brain injuries.
  相似文献   

4.
5.
6.
7.
8.
9.
Integrated water resources management practice is gaining popularity as an alternative water source due to the limited supply of freshwater. The present study was carried out on the photocatalytic degradation of Direct red 28 (DR-28) dye using magnetic nanoparticles (MNPs; Fe3O4) as a photocatalyst. The study was conducted on the photocatalytic degradation of DR-28 dye in synthetic dye effluent water, to understand the effects of different photoreaction parameters on the degradation kinetics. The influence of different parameters such as time, amount of photocatalyst, concentration of H2O2 and pH was investigated. At the optimum dosage of MNPs (0.6?g/L) with 4?mmol/L of H2O2, significant photocatalytic degradation of DR-28 dye (93.2%) was observed. The kinetic study revealed that the photocatalytic degradation followed pseudo-first-order kinetics. The degradation performance of Fe3O4 nanoparticles as a photocatalyst for DR-28 dye was compared with titanium dioxide (TiO2) and it was found that the performance of Fe3O4 as a photocatalyst is superior to TiO2 photocatalyst. The real dye effluent was also degraded at optimum conditions and promising results were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号