首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bilayer Nd/Al metallization structure has been deposited onto low pressure organometallic vapor phase epitaxy grown n-type GaN ( 1 × 1018 cm−3) by electron-beam evaporation. Ohmic metal contacts were patterned photolithographically for standard transmission line measurement, and then thermally annealed at temperatures ranging from 200 to 350°C and from 500 to 650°C using conventional thermal annealing (CTA) and rapid thermal annealing (RTA), respectively. The lowest values for the specify contact resistivity of 9.8 × 10−6 Ω−cm2 and 8 × 10−6 Ω−cm2 were obtained using Nd/Al metallization with CTA of 250°C for 5 min and RTA of 600°C for 30 s. Examination of the surface morphology using atomic force microscopy as a function of annealing temperature revealed that the surface roughness was strongly influenced by conventional thermal annealing, it was smooth in the temperature range from 550 to 650°C for rapid thermal annealing. Auger electron spectroscopy depth profiling was employed to investigate the metallurgy and interdiffusion of contact formation.  相似文献   

2.
The residual electrically active defects in(4×10~(12)cm~(-2)(30KeV)+5×10~(12)cm~(-2)(130KeV))si-implanted LEC undoped si-GaAs activated by two-step rapid thermal annealing(RTA)LABELED AS 970℃(9S)+750℃(12S)have been investigated with deep level transient spec-troscopy(DLTS).Two electron traps ET_1(E_c-0.53eV,σ_n=2.3×10~(-16)cm~2)and ET_2(E_c-0.81eV,σ_n=9.7×10(-13)cm~2)are detected.Furthermore,the noticeable variations of trap's con-centration and energy level in the forbidden gap with the depth profile of defects induced by ion im-plantation and RTA process have also been observed.The[As_i·V_(As)·As_(Ga)]and[V_(As)·As_i·V_(Ga)·As_(Ga)]are proposed to be the possible atomic configurations of ET_1 and ET_2,respectively to explaintheir RTA behaviors.  相似文献   

3.
Amorphization and solid-phase epitaxial growth were studied in C-cluster ion-implanted Si. C7H7 ions were implanted at a C-equivalent energy of 10 keV to C doses of 0.1 × 1015 cm−2 to 8.0 × 1015 cm−2 into (001) Si wafers. Transmission electron microscopy revealed a C amorphizing dose of ~5.0 ×  1014 cm−2. Annealing of amorphized specimens to effect solid-phase epitaxial growth resulted in defect-free growth for C doses of 0.5 × 1015 cm−2 to 1.0 × 1015 cm−2. At higher doses, growth was defective and eventually polycrystalline due to induced in-plane tensile stress from substitutional C incorporation.  相似文献   

4.
The defects and microstructure of low-dose (<0.7 × 1018 cm−2), oxygen-implanted silicon-on-insulator (SIMOX) material were investigated as a function of implant dose and annealing temperature by plan-view and cross-sectional transmission electron microscopy. The threading-dislocations in low-dose (0.2∼0.3×1018 cm−2), annealed SIMOX originate from unfaulting of long (∼10 μm), shallow (0.3 μm), extrinsic stacking faults generated during the ramping stage of annealing. As dose increases, the defect density is reduced and the structure of the buried oxide layer evolves dramatically. It was found that there is a dose window which gives a lower defect density and a continuous buried oxide with a reduced density of Si islands in the buried oxide.  相似文献   

5.
Implantation of B has been performed into an epitaxially grown layer of 6H SiC, at two different B concentrations, 2×1016 cm−3 and 2×1018 cm−3. Subsequently, an epitaxial layer was regrown on the B implanted layer. The samples were investigated by transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS). In the highly B-doped layers plate-like defects were found, associated with large strain fields, and an increased B concentration. These defects were stable at the originally implanted region during regrowth and at anneal temperatures up to 1700°C. In the samples implanted with the lower B concentration, no crystal defects could be detected by TEM. No threading dislocations or other defects were observed in the regrown epitaxial layer, which shows the possibility to grow a layer with high crystalline quality on B implanted 6H SiC. By SIMS, it was found that B piles up at the interface to the regrown layer, which could be explained by enhanced diffusion from an increased concentration of point defects created by implantation damage in the region. B is also spread out into the original crystal and in the regrown layer at a concentration of below 2×1016 cm−3, with a diffusion constant estimated to 1.3×10−12 cm2s−1. This diffusion is most probably not driven by implantation damage, but by intrinsic defects in the grown crystal. Our investigation shows that the combination of implantation and subsequent regrowth techniques could be used in SiC for building advanced device structures, with the crystal quality in the regrown layer not being deteriorated by crystal defects in the implanted region. A device process using B implantation and subsequent regrowth could on the other hand be limited by the diffusion of B.  相似文献   

6.
Rapid thermal annealing (RTA) technology offers potential advantages for GaAs MESFET device technology such as reducing dopant diffusion and minimizing the redistribution of background impurities. LEC semi-insulating GaAs substrates were implanted with Si at energies from 100 to 400 keV to doses from 1 × 1012 to 1 × 1014/cm2. The wafers were encapsulated with Si3N4 and then annealed at temperatures from 850-1000° C in a commercial RTA system. Wafers were also annealed using a conventional furnace cycle at 850° C to provide a comparison with the RTA wafers. These implanted layers were evaluated using capacitance-voltage and Hall effect measurements. In addition, FET’s were fabricated using selective implants that were annealed with either RTA or furnace cycles. The effects of anneal temperature and anneal time were determined. For a dose of 4 × 1012/cm2 at 150 keV with anneal times of 5 seconds at 850, 900, 950 and 1000° C the activation steadily increased in the peak of the implant with overlapping profiles in the tail of the profiles, showing that no significant diffusion occurs. In addition, the same activation could be obtained by adjusting the anneal times. A plot of the equivalent anneal times versus 1/T gives an activation energy of 2.3 eV. At a higher dose of 3 × 1013 an activation energy of 1.7 eV was obtained. For a dose of 4 × 1012 at 150 keV both the RTA and furnace annealing give similar activations with mobilities between 4700 and 5000 cm2/V-s. Mobilities decrease to 4000 at a dose of 1 × 1013 and to 2500 cm2/V-s at 1 × 1014/cm2. At doses above 1 × 1013 the RTA cycles gave better activation than furnace annealed wafers. The MESFET parameters for both RTA and furnace annealed wafers were nearly identical. The average gain and noise figure at 8 GHz were 7.5 and 2.0, respectively, for packaged die from either RTA or furnace annealed materials.  相似文献   

7.
The model of monocrystalline silicon solar cells is established,and the effects of wafer parameters,such as the p-Si(100) substrate thickness,the defect density,and the doping concentration,on the electronic properties of monocrystalline silicon solar cells are analyzed.The results indicate that the solar cells with an Al back-surface-field will have good electronic properties when the wafers meet the following three conditions:(i) the defect density is less than 1.0×1011 cm^-3;(ii) the doping concentration is from 5×10^15 cm^-3 to 1×10^17 cm^-3,i.e.the bulk resistivity is from 0.5 Ω·cm to 10 Ω·cm;(iii) the cells substrate thickness is in the range of 100 μm to 200 μm.  相似文献   

8.
Acid etching for accurate determination of dislocation density in GaN   总被引:2,自引:0,他引:2  
Hot phosphoric-acid etching and atomic force microscopy (AFM) were used to etch and characterize various GaN materials, including freestanding GaN grown by hydride vapor-phase epitaxy (HVPE), metal-organic chemical-vapor deposition (MOCVD) GaN films on sapphire and silicon carbide, and homoepitaxial GaN films on polished freestanding-GaN wafers. It was found that etching at optimal conditions can accurately reveal the dislocations in GaN; however, the optimal etch conditions were different for samples grown by different techniques. The as-grown HVPE samples were most easily etched, while the MOCVD homoepitaxial films were most difficult to etch. Etch-pit density (EPD) ranging from 4×106 cm−2 to 5×109 cm−2 was measured in close agreement with the respective dislocation density determined from transmission electron microscopy (TEM).  相似文献   

9.
This paper focuses on growth of 4H−SiC epitaxial layers using the hot-wall CVD technique. The relation between the growth regime like total flow, system pressure, C/Si ratio and growth temperature and the characteristics of nominally undoped epilayers, such as thickness uniformity and background doping concentration have been investigated. The epitaxial layers were investigated by optical microscopy, capacitance-voltage measurements, x-ray rocking curve maps, electron channelling patterns and secondary ion mass spectroscopy. Layers up to 40 μm in thickness with a variation of about ±4% and with residual n-type doping levels in the low 1014 cm−3 ranges have been obtained on Si faces wafers. SIMS measurements have shown that the impurity concentration of acceptors like B and Al is below 2×1014 cm−3.  相似文献   

10.
A process is described for creating local oxidation of silicon structure (LOCOS) structures in silicon carbide using enhanced thermal oxidation by argon implantation. Thicker oxides were created in selective regions by using multiple energy argon implants at a dose of 1 × 1015 cm−2 prior to thermal oxidation. Atomic force microscopy was used to analyze the fabricated LOCOS structure.  相似文献   

11.
The study is concerned with the effect of electron irradiation (with the energies E = 7 and 10 MeV and doses D = 1016−1018 cm−2) and subsequent heat treatments in the temperature range 100–1000°C on the electrical properties and the spectrum of deep traps of undoped (concentration of electrons n = 1 × 1014−1 × 1016 cm−3), moderately Si-doped (n = (1.2−2) × 1017 cm−3), and heavily Si-doped (n = (2−3.5) × 1018 cm−3) epitaxial n-GaN layers grown on Al2O3 substrates by metal-organic chemical vapor deposition. It is found that, on electron irradiation, the resistivity of n-GaN increases, this is due to a shift of the Fermi level to the limiting position close to E c −0.91 eV. The spectrum of deep traps is studied for the initial and electron-irradiated n-GaN. It is shown that the initial properties of the irradiated material are restored in the temperature range 100–1000°C, with the main stage of the annealing of radiation defects at about 400°C.  相似文献   

12.
Effects of temperature and dosage on the evolution of extended defects during annealing of MeV ion-implanted Czochralski (CZ) p-type (001) silicon have been studied using transmission electron microcopy. Excess interstitials generated in a 1 1015 cm−2/1.5 MeV B+ implanted Si have been found to transform into extended interstitial {311} defects upon rapid thermal annealing at 800°C for 15 sec. During prolonged furnace annealing at 960°C for 1 h, some of the {311} defects grow longer at the expense of the smaller ones, and the average width of the defects seems to decrease at the same time. Formation of stable dislocation loops appears to occur only above a certain threshold annealing temperature (∼1000°C). The leakage current in diodes fabricated on 1.5 MeV B+ implanted wafers was found to be higher for a dosage of 1 1014cm−2 and less, as compared to those fabricated with a dosage of 5 1014 cm−2 and more. The difference in the observed leakage current has been attributed to the presence of dislocations in the active device region of the wafers that were implanted with the lower dosage.  相似文献   

13.
Kalygina  V. M.  Zarubin  A. N.  Nayden  Ye. P.  Novikov  V. A.  Petrova  Y. S.  Tolbanov  O. P.  Tyazhev  A. V.  Yaskevich  T. M. 《Semiconductors》2011,45(8):1097-1102
The effect of oxygen plasma on gallium oxide films formed by electrochemical oxidation of n-GaAs wafers with a donor concentration N d = (1–2) × 1016 cm−3 has been investigated. It is shown that the treatment in an oxygen plasma at a temperature of 50–90°C increases the concentration of β-phase crystallites, which causes an increase in the permittivity, a decrease in the dielectric dissipation factor, and a change in the conductivity of GaAs-〈gallium oxide〉-metal structures.  相似文献   

14.
The photoluminescence spectra and behavior of the structural defects in layers obtained by implanting 1.0–1.8-MeV Er and Dy ions at a dose of 1×1013 cm−2 are investigated after annealing at 1000–1200 °C for 0.5–1 h in argon or a chlorine-containing atmosphere. The structural defects are studied using transmission electron microscopy and selective chemical etching. The dominant features in the luminescence spectra of the Si:Er and Si:Dy layers following annealing in the chlorine-containing atmosphere are lines associated with the formation of edge dislocations, while the dominant features following the annealing of Si:Er and Si:Dy layers in argon are the erbium-related lines. A comparative analysis of the luminescence spectra of the Si:Er and Si:Dy layers shows that the highest intensity of dislocation-related luminescence is achieved in the erbium-implanted structures. A significant influence of intrinsic point defects on the structural and optical properties of erbium-and dysprosium-implanted silicon is revealed. Fiz. Tekh. Poluprovodn. 33, 656–659 (June 1999)  相似文献   

15.
The physical and electrical properties of BF 2 + implanted polysilicon films subjected to rapid thermal annealing (RTA) are presented. It is found that the out diffusion ofF and its segregation at polysilicon/silicon oxide interface during RTA are the major causes ofF anomalous migration. Fluorine bubbles were observed in BF 2 + implanted samples at doses of 1×1015 and 5×1015 cm−2 after RTA.  相似文献   

16.
In this work, heavily aluminum (Al)-doped layers for ohmic contact formation to p-type SiC were produced by utilizing the high efficiency of Al incorporation during the epitaxial growth at low temperature, previously demonstrated by the authors’ group. The low-temperature halo-carbon epitaxial growth technique with in situ trimethylaluminum (TMA) doping was used. Nearly featureless epilayer morphology with an Al atomic concentration exceeding 3 × 1020 cm−3 was obtained after growth at 1300°C with a growth rate of 1.5 μm/h. Nickel transfer length method (TLM) contacts with a thin adhesion layer of titanium (Ti) were formed. Even prior to contact annealing, the as-deposited metal contacts were almost completely ohmic, with a specific contact resistance of 2 × 10−2 Ω cm2. The specific contact resistance was reduced to 6 × 10−5 Ω cm2 by employing a conventional rapid thermal anneal (RTA) at 750°C. Resistivity of the epitaxial layers better than 0.01 Ω cm was measured for an Al atomic concentration of 2.7 × 1020 cm−3.  相似文献   

17.
n-Type Si(100) wafers with a thermally grown Si3N4 layer (∼170 nm) were sequentially implanted with 160 keV He ions at a dose of 5 × 1016 cm−2 and 110 keV H ions at a dose of 1 × 1016 cm−2. Depending on the annealing temperature, surface exfoliations of two layers were observed by optical microscopy and atomic force microscopy. The first layer exfoliation was found to correspond to the top Si3N4 layer, which was produced at lower annealing temperatures. The other was ascribed to the implanted Si layer, which was formed at higher temperatures. The possible exfoliation processes are tentatively discussed, and potential applications of such phenomena are also suggested.  相似文献   

18.
Recently a 150 keV, 2 × 1012 cm−2, Si29 implant, with furnace annealing at 850° C for 10 min with a GaAs proximity wafer, has been proposed as a standard qualification test for semi-insulating GaAs. In general, the electrical activation efficiency of implanted wafers is determined either from Hall effect data or from capacitance-voltage (C-V) data; however, the Hall effect method requires sizable depletion corrections at low implant doses. In this paper, we examine the proposed standard, and the methods of determining activation, from three points of view: (1) rapid-thermal annealing (RTA) vs furnace annealing; (2) a Si proximity cap vs a GaAs proximity cap; and (3) Hall effect vs C-V. Our conclusions are: (1) RTA produces higher activation efficiencies, at least for our particular wafers, than furnace annealing; (2) Si and GaAs proximity caps produce nearly equivalent activation efficiencies; and (3) the Hall effect, when corrected for depletion, is a useful technique for measuring activation efficiency, and appears to be more accurate than the C-V technique.  相似文献   

19.
Samples for transmission line model (TLM) and Hall measurements were fabricated on (0001) 4H-SiC implanted with nitrogen at 1 × 1018 cm−3, 4 × 1018 cm−3, 1 × 1019 cm−3, 4 × 1019 cm−3, and 1 × 1020 cm−3. Following high-temperature activation, the activation percentage dropped from ~90% to ~20%, and the Hall mobility decreased from ~100 cm2/V · s to ~20 cm2/V · s as the implant concentration increased from 1 × 1018 cm−3 to 1 × 1020 cm−3. The specific contact resistance as a function of Hall concentration is compared with published data for Ni contacts to epitaxial layers. The specific contact resistance as a function of activation temperature was also studied for two fixed implant concentrations of 5 × 1018 cm−3 and 1 × 1020 cm−3.  相似文献   

20.
This paper presents transport measurements on both vacancy doped and gold doped Hg0.7Cd0.3Te p-type epilayers grown by liquid phase epitaxy (LPE), with NA=2×1016 cm−3, in which a thin 2 μm surface layer has been converted to n-type by a short reactive ion etching (RIE) process. Hall and resistivity measurements were performed on the n-on-p structures in van der Pauw configuration for the temperature range from 30 K to 400 K and magnetic field range up to 12 T. The experimental Hall coefficient and resistivity data has been analyzed using the quantitative mobility spectrum analysis procedure to extract the transport properties of each individual carrier contributing to the total conduction process. In both samples three distinct carrier species have been identified. For 77 K, the individual carrier species exhibited the following properties for the vacancy and Au-doped samples, respectively, holes associated with the unconverted p-type epilayer with p ≈ 2 × 1016 cm−3, μ ≈ 350 cm2V−1s−1, and p ≈ 6 × 1015 cm−3, μ ≈ 400 cm2V−1s−1; bulk electrons associated with the RIE converted region with n ≈ 3 × 1015cm−3, μ ≈ 4 × 104 cm2V−1s−1, and n ≈ 1.5 × 1015 cm−3, μ ≈ 6 × 104 cm2V−1s−1; and surface electrons (2D concentration) n ≈ 9 × 1012 cm−2 and n ≈ 1 × 1013 cm−2, with mobility in the range 1.5 × 103 cm2V−1s−1 to 1.5 × 104 cm2V−1s−1 in both samples. The high mobility of bulk electrons in the RIE converted n-layer indicates that a diffusion process rather than damage induced conversion is responsible for the p-to-n conversion deep in the bulk. On the other hand, these results indicate that the surface electron mobility is affected by RIE induced damage in a very thin layer at the HgCdTe surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号