首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Candida species are the most common fungal pathogens infecting humans and can cause severe illnesses in immunocompromised individuals. The increased resistance of Candida to traditional antifungal drugs represents a great challenge in clinical settings. Therefore, novel approaches to overcome antifungal resistance are desired. Here, we investigated the use of an antimicrobial peptide WMR against Candida albicans and non-albicans Candida species in vitro and in vivo. Results showed a WMR antifungal activity on all Candida planktonic cells at concentrations between 25 μM to >50 μM and exhibited activity at sub-MIC concentrations to inhibit biofilm formation and eradicate mature biofilm. Furthermore, in vitro antifungal effects of WMR were confirmed in vivo as demonstrated by a prolonged survival rate of larvae infected by Candida species when the peptide was administered before or after infection. Additional experiments to unravel the antifungal mechanism were performed on C. albicans and C. parapsilosis. The time-killing curves showed their antifungal activity, which was further confirmed by the induced intracellular and mitochondrial reactive oxygen species accumulation; WMR significantly suppressed drug efflux, down-regulating the drug transporter encoding genes CDR1. Moreover, the ability of WMR to penetrate within the cells was demonstrated by confocal laser scanning microscopy. These findings provide novel insights for the antifungal mechanism of WMR against Candida albicans and non-albicans, providing fascinating scenarios for the identification of new potential antifungal targets.  相似文献   

2.
Candidaalbicans represents one of the most common fungal pathogens. Due to its increasing incidence and the poor efficacy of available antifungals, finding novel antifungal molecules is of great importance. Camphor and eucalyptol are bioactive terpenoid plant constituents and their antifungal properties have been explored previously. In this study, we examined their ability to inhibit the growth of different Candida species in suspension and biofilm, to block hyphal transition along with their impact on genes encoding for efflux pumps (CDR1 and CDR2), ergosterol biosynthesis (ERG11), and cytotoxicity to primary liver cells. Camphor showed excellent antifungal activity with a minimal inhibitory concentration of 0.125–0.35 mg/mL while eucalyptol was active in the range of 2–23 mg/mL. The results showed camphor’s potential to reduce fungal virulence traits, that is, biofilm establishment and hyphae formation. On the other hand, camphor and eucalyptol treatments upregulated CDR1; CDR2 was positively regulated after eucalyptol application while camphor downregulated it. Neither had an impact on ERG11 expression. The beneficial antifungal activities of camphor were achieved with an amount that was non-toxic to porcine liver cells, making it a promising antifungal compound for future development. The antifungal concentration of eucalyptol caused cytotoxic effects and increased expression of efflux pump genes, which suggests that it is an unsuitable antifungal candidate.  相似文献   

3.
The increasing resistance to conventional antifungal drugs is a widespread concern, and a search for new compounds, active against different species of fungi, is demanded. Antimicrobial peptides (AMPs) hold promises in this context. Here we investigated the activity of the frog skin AMP Temporin G (TG) against a panel of fungal strains, by following the Clinical and Laboratory Standards Institute protocols. TG resulted to be active against (i) Candida species and Cryptococcus neoformans, with MIC50 between 4 µM and 64 µM after 24 h of incubation; (ii) dermatophytes with MIC80 ranging from 4 to 32 µM, and (iii) Aspergillus strains with MIC80 of 128 µM. In addition, our tests revealed that TG reduced the metabolic activity of Candida albicans cells, with moderate membrane perturbation, as proven by XTT and Sytox Green assays, respectively. Furthermore, TG was found to be effective against some C. albicans virulence factors; indeed, at 64 µM it was able to inhibit ~90% of yeast–mycelial switching, strongly prevented biofilm formation, and led to a 50% reduction of metabolic activity in mature biofilm cells, and ~30–35% eradication of mature biofilm biomass. Even though further studies are needed to deepen our knowledge of the mechanisms of TG antifungal activity, our results suggest this AMP as an attractive lead compound for treatment of fungal diseases.  相似文献   

4.
5.
Resistance to antifungal therapy of Candida albicans and non-albicans Candida strains, frequently associated with oral candidosis, is on the rise. In this context, host-defense peptides have emerged as new promising candidates to overcome antifungal resistance. Thus, the aim of this study was to assess the effectiveness against Candida species of different Catestatin-derived peptides, as well as the combined effect with serum albumin. Among Catestatin-derived peptides, the most active against sensitive and resistant strains of C. albicans, C. tropicalis and C. glabrata was the D-isomer of Cateslytin (D-bCtl) whereas the efficiency of the L-isomer (L-bCtl) significantly decreases against C. glabrata strains. Images obtained by transmission electron microscopy clearly demonstrated fungal membrane lysis and the leakage of the intracellular material induced by the L-bCtl and D-bCtl peptides. The possible synergistic effect of albumin on Catestatin-derived peptides activity was investigated too. Our finding showed that bovine serum albumin (BSA) when combined with the L- isomer of Catestatin (L-bCts) had a synergistic effect against Candida albicans especially at low concentrations of BSA; however, no synergistic effect was detected when BSA interacted with L-bCtl, suggesting the importance of the C-terminal end of L-bCts (GPGLQL) for the interaction with BSA. In this context in vitro D-bCtl, as well as the combination of BSA with L-bCts are potential candidates for the development of new antifungal drugs for the treatment of oral candidosis due to Candida and non-Candida albicans, without detrimental side effects.  相似文献   

6.
The increasing resistance of fungi to antibiotics is a severe challenge in public health, and newly effective drugs are required. Promising potential medications are lipopeptides, linear antimicrobial peptides (AMPs) conjugated to a lipid tail, usually at the N-terminus. In this paper, we investigated the in vitro and in vivo antifungal activity of three short myristoylated and non-myristoylated peptides derived from a mutant of the AMP Chionodracine. We determined their interaction with anionic and zwitterionic membrane-mimicking vesicles and their structure during this interaction. We then investigated their cytotoxic and hemolytic activity against mammalian cells. Lipidated peptides showed a broad spectrum of activity against a relevant panel of pathogen fungi belonging to Candida spp., including the multidrug-resistant C. auris. The antifungal activity was also observed vs. biofilms of C. albicans, C. tropicalis, and C. auris. Finally, a pilot efficacy study was conducted on the in vivo model consisting of Galleria mellonella larvae. Treatment with the most-promising myristoylated peptide was effective in counteracting the infection from C. auris and C. albicans and the death of the larvae. Therefore, this myristoylated peptide is a potential candidate to develop antifungal agents against human fungal pathogens.  相似文献   

7.
Candida auris is a multidrug-resistant fungal pathogen that can cause disseminated bloodstream infections with up to 60% mortality in susceptible populations. Of the three major classes of antifungal drugs, most C. auris isolates show high resistance to azoles and polyenes, with some clinical isolates showing resistance to all three drug classes. We reported in this study a novel approach to treating C. auris disseminated infections through passive transfer of monoclonal antibodies (mAbs) targeting cell surface antigens with high homology in medically important Candida species. Using an established A/J mouse model of disseminated infection that mimics human candidiasis, we showed that C3.1, a mAb that targets β-1,2-mannotriose (β-Man3), significantly extended survival and reduced fungal burdens in target organs, compared to control mice. We also demonstrated that two peptide-specific mAbs, 6H1 and 9F2, which target hyphal wall protein 1 (Hwp1) and phosphoglycerate kinase 1 (Pgk1), respectively, also provided significantly enhanced survival and reduction of fungal burdens. Finally, we showed that passive transfer of a 6H1+9F2 cocktail induced significantly enhanced protection, compared to treatment with either mAb individually. Our data demonstrate the utility of β-Man3- and peptide-specific mAbs as an effective alternative to antifungals against medically important Candida species including multidrug-resistant C. auris.  相似文献   

8.
《Ceramics International》2022,48(9):12660-12674
Zinc oxide is one of the most versatile nanostructured materials with a broad range of applications. Besides, its physicochemical properties can be tuned easily by synthesis conditions to be optimal for a specific application. In our group, we aim for the production of visible light-active materials with enhanced antimicrobial activity. Thus, we synthesize ZnO–Cu2+and Ag@ZnO–Cu2+ by using a fast and robust microwave solvothermal reaction. We investigate the limit of solubility of Cu2+into ZnO lattice producing Cu doped ZnO materials with different doping levels (1, 2, 3, 4, and 5 at. %, Cu/Zn). We also investigate the role of the copper precursor, using copper(II) acetate or copper(II) sulfate as model precursors. Copper acetate incorporates more efficiently into ZnO lattice by decreasing the Eg value of the doped materials at low doping levels. Furthermore, we study the composites Ag@ZnO–Cu2+ aiming to reduce doping levels and to improve antimicrobial activity. Characterization of the materials by different techniques demonstrates their uniform size, purity, crystallinity, and visible light activity. In this study, we evaluate airborne fungal contamination and demonstrate the capacity of ZnO–Cu2+ and Ag@ZnO–Cu2+ to inhibit fungal growth. We studied the microbiological quality of indoor air (vivarium) by sampling air under different conditions. By sampling air with a photocatalytic prototype, the amount of fungi in the air decreases considerably, particularly fungi that can enter the lung. In addition, ZnO–Cu2+ shows excellent antifungal activity against Candida sp at low doses. We use Atomic force microscopy (AFM) and holotomographic microscopy (HTM) to provide further evidence on the capacity of the prepared materials to achieve effective damage to fungal cells and to inhibit biofilm formation.  相似文献   

9.
Staphylococcus epidermidis is a bacterium that is part of the human microbiota. It is most abundant on the skin, in the respiratory system and in the human digestive tract. Also, Staphylococcus aureus contributes to human infections and has a high mortality rate. Both of these bacterial species produce biofilm, a pathogenic factor increasing their resistance to antibiotics. For this reason, we are looking for new substances that can neutralize bacterial cells. One of the best-known substances with such effects are silver nanoparticles. They exhibited antibacterial and antibiofilm formation activity that depended on their size, shape and the concentration used. In this review, we presented the data related to the use of silver nanoparticles in counteracting bacterial growth and biofilm formation published in scientific papers between 2017 and 2021. Based on the review of experimental results, the properties of nanoparticles prompt the expansion of research on their activity.  相似文献   

10.
An amphipathic α-helical peptide, Hp1404, was isolated from the venomous gland of the scorpion Heterometrus petersii. Hp1404 exhibits antimicrobial activity against methicillin-resistant Staphylococcus aureus but is cytotoxic. In this study, we designed antimicrobial peptides by substituting amino acids at the 14 C-terminal residues of Hp1404 to reduce toxicity and improve antibacterial activity. The analog peptides, which had an amphipathic α-helical structure, were active against gram-positive and gram-negative bacteria, particularly multidrug-resistant Acinetobacter baumannii, and showed lower cytotoxicity than Hp1404. N-phenyl-1-naphthylamine uptake and DisC3-5 assays demonstrated that the peptides kill bacteria by effectively permeating the outer and cytoplasmic membranes. Additionally, the analog peptides inhibited biofilm formation largely than Hp1404 at low concentrations. These results suggest that the analog peptides of Hp1404 can be used as therapeutic agents against A. baumannii infection.  相似文献   

11.
Background: The incidence of fungal infections, especially those caused by Candida yeasts, has increased over the last two decades. However, the indicated therapy for fungal control has limitations. Hence, medicinal plants have emerged as an alternative in the search for new antifungal agents as they present compounds, such as essential oils, with important biological effects. Published data demonstrate important pharmacological properties of the essential oil of Cymbopogon nardus (L.) Rendle; these include anti-tumor, anti-nociceptive, and antibacterial activities, and so an investigation of this compound against pathogenic fungi is interesting. Objective: The aim of this study was to evaluate the chemical composition and biological potential of essential oil (EO) obtained from the leaves of C. nardus focusing on its antifungal profile against Candida species. Methods: The EO was obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). Testing of the antifungal potential against standard and clinical strains was performed by determining the minimal inhibitory concentration (MIC), time-kill, inhibition of Candida albicans hyphae growth, and inhibition of mature biofilms. Additionally, the cytotoxicity was investigated by the IC50 against HepG-2 (hepatic) and MRC-5 (fibroblast) cell lines. Results: According to the chemical analysis, the main compounds of the EO were the oxygen-containing monoterpenes: citronellal, geranial, geraniol, citronellol, and neral. The results showed important antifungal potential for all strains tested with MIC values ranging from 250 to 1000 μg/mL, except for two clinical isolates of C. tropicalis (MIC > 1000 μg/mL). The time-kill assay showed that the EO inhibited the growth of the yeast and inhibited hyphal formation of C. albicans strains at concentrations ranging from 15.8 to 1000 μg/mL. Inhibition of mature biofilms of strains of C. albicans, C. krusei and C. parapsilosis occurred at a concentration of 10× MIC. The values of the IC50 for the EO were 96.6 μg/mL (HepG-2) and 33.1 μg/mL (MRC-5). Conclusion: As a major virulence mechanism is attributed to these types of infections, the EO is a promising compound to inhibit Candida species, especially considering its action against biofilm.  相似文献   

12.
Infections with Candida spp. are commonly found in long-time denture wearers, and when under immunosuppression can lead to stomatitis. Imidazolium ionic liquids with an alkyl or alkyloxymethyl chain and a natural (1R,2S,5R)-(−)-menthol substituent possess high antifungal and antiadhesive properties towards C. albicans, C. parapsilosis, C. glabrata and C. krusei. We tested three compounds and found they disturbed fungal plasma membranes, with no significant hemolytic properties. In the smallest hemolytic concentrations, all compounds inhibited C. albicans biofilm formation on acrylic, and partially on porcelain and alloy dentures. Biofilm eradication may result from hyphae inhibition (for alkyl derivatives) or cell wall lysis and reduction of adhesins level (for alkyloxymethyl derivative). Thus, we propose the compounds presented herein as potential anti-fungal denture cleaners or denture fixatives, especially due to their low toxicity towards mammalian erythrocytes after short-term exposure.  相似文献   

13.
The alarming raise of multi-drug resistance among human microbial pathogens makes the development of novel therapeutics a priority task. In contrast to conventional antibiotics, antimicrobial peptides (AMPs), besides evoking a broad spectrum of activity against microorganisms, could offer additional benefits, such as the ability to neutralize toxins, modulate inflammatory response, eradicate bacterial and fungal biofilms or prevent their development. The latter properties are of special interest, as most antibiotics available on the market have limited ability to diffuse through rigid structures of biofilms. Lipidation of AMPs is considered as an effective approach for enhancement of their antimicrobial potential and in vivo stability; however, it could also have undesired impact on selectivity, solubility or the aggregation state of the modified peptides. In the present work, we describe the results of structural modifications of compounds designed based on cationic antimicrobial peptides DK5 and CAR-PEG-DK5, derivatized at their N-terminal part with fatty acids with different lengths of carbon chain. The proposed modifications substantially improved antimicrobial properties of the final compounds and their effectiveness in inhibition of biofilm development as well as eradication of pre-formed 24 h old biofilms of Candida albicans and Staphylococcus aureus. The most active compounds (C5-DK5, C12-DK5 and C12-CAR-PEG-DK5) were also potent against multi-drug resistant Staphylococcus aureus USA300 strain and clinical isolates of Pseudomonas aeruginosa. Both experimental and in silico methods revealed strong correlation between the length of fatty acid attached to the peptides and their final membranolytic properties, tendency to self-assemble and cytotoxicity.  相似文献   

14.
In recent years, clinicians and doctors have become increasingly interested in fungal infections, including those affecting the mucous membranes. Vulvovaginal candidiasis (VVC) is no exception. The etiology of this infection remains unexplained to this day, as well as the role and significance of asymptomatic vaginal Candida colonization. There are also indications that in the case of VVC, standard methods of determining drug susceptibility to antifungal drugs may not have a real impact on their clinical effectiveness—which would explain, among other things, treatment failures and relapse rates. The aim of the study was to verify the promising results obtained previously in vitro using standard methods, in a newly developed ex vivo model, using tissue fragments of the mouse vagina. The main goal of the study was to determine whether the selected ultrashort cyclic lipopeptides (USCLs) and their combinations with fluconazole at specific concentrations are equally effective against Candida forming a biofilm directly on the surface of the vaginal epithelium. In addition, the verification was also performed with the use of another model for the study of microorganisms (biofilms) in vitro—the BioFlux system, under microfluidic conditions. The obtained results indicate the ineffectiveness of the tested substances ex vivo at concentrations eradicating biofilm in vitro. Nevertheless, the relatively most favorable and promising results were still obtained in the case of combination therapy—a combination of low concentrations of lipopeptides (mainly linear analogs) with mycostatic fluconazole. Additionally, using BioFlux, it was not possible to confirm the previously obtained results. However, an inhibiting effect of the tested lipopeptides on the development of biofilm under microfluidic conditions was demonstrated. There is an incompatibility between the classic in vitro methods, the newer BioFlux method of biofilm testing, offering many advantages postulated elsewhere, and the ex vivo method. This incompatibility is another argument for the need, on the one hand, to intensify research on the pathomechanism of VVC, and, on the other hand, to verify and maybe modify the standard methods used in the determination of Candida susceptibility.  相似文献   

15.
Candida albicans forms extremely drug-resistant biofilms, which present a serious threat to public health globally. Biofilm-based infections are difficult to treat due to the lack of efficient antifungal therapeutics, resulting in an urgent demand for the development of novel antibiofilm strategies. In this study, the antibiofilm activity of DiMIQ (5,11-dimethyl-5H-indolo[2,3-b]quinoline) was evaluated against C. albicans biofilms. DiMIQ is a synthetic derivative of indoquinoline alkaloid neocryptolepine isolated from a medicinal African plant, Cryptolepis sanguinolenta. Antifungal activity of DiMIQ was determined using the XTT assay, followed by cell wall and extracellular matrix profiling and cellular proteomes. Here, we demonstrated that DiMIQ inhibited C. albicans biofilm formation and altered fungal cell walls and the extracellular matrix. Cellular proteomics revealed inhibitory action against numerous translation-involved ribosomal proteins, enzymes involved in general energy producing processes and select amino acid metabolic pathways including alanine, aspartate, glutamate, valine, leucine and isoleucine. DiMIQ also stimulated pathways of cellular oxidation, metabolism of carbohydrates, amino acids (glycine, serine, threonine, arginine, phenylalanine, tyrosine, tryptophan) and nucleic acids (aminoacyl-tRNA biosynthesis, RNA transport, nucleotide metabolism). Our findings suggest that DiMIQ inhibits C. albicans biofilms by arresting translation and multidirectional pathway reshaping of cellular metabolism. Overall, this agent may provide a potent alternative to treating biofilm-associated Candida infections.  相似文献   

16.
Background: Despite the widespread use of antibiotics to treat infected tonsils, episodes of tonsillitis tend to recur and turn into recurrent tonsillitis (RT) or are complicated by peritonsillar abscesses (PTAs). The treatment of RT and PTAs remains surgical, and tonsillectomies are still relevant. Materials and methods: In a prospective, controlled study, we analyzed the bacteria of the tonsillar crypts of 99 patients with RT and 29 patients with a PTA. We performed the biofilm formation and antibacterial susceptibility testing of strains isolated from study patients. We compared the results obtained between patient groups with the aim to identify any differences that may contribute to ongoing symptoms of RT or that may play a role in developing PTAs. Results: The greatest diversity of microorganisms was found in patients with RT. Gram-positive bacteria were predominant in both groups. Candida species were predominant in patients with a PTA (48.3% of cases). Irrespective of patient group, the most commonly isolated pathogenic bacterium was S. aureus (in 33.3% of RT cases and in 24.14% of PTA cases). The most prevalent Gram-negative bacterium was K. pneumoniae (in 10.1% of RT cases and in 13.4% of PTA cases). At least one biofilm-producing strain was found in 37.4% of RT cases and in 27.6% of PTA cases. Moderate or strong biofilm producers were detected in 16 out of 37 cases of RT and in 2 out of 8 PTA cases. There was a statistically significant association found between the presence of Gram-positive bacteria and a biofilm-formation phenotype in the RT group and PTA group (Pearson χ2 test, p < 0.001). S. aureus and K. pneumoniae strains were sensitive to commonly used antibiotics. One S. aureus isolate was identified as MRSA. Conclusions: S. aureus is the most common pathogen isolated from patients with RT, and Candida spp. are the most common pathogens isolated from patients with a PTA. S. aureus isolates are susceptible to most antibiotics. Patients with RT more commonly have biofilm-producing strains, but patients with a PTA more commonly have biofilm non-producer strains. K. pneumoniae does not play a major role in biofilm production.  相似文献   

17.
Fungal infections, including those caused by antifungal-resistant Candida, are a very challenging health problem worldwide. Whereas different ruthenium complexes were previously studied for their anti-Candida potential, Ru-cyclopentadienyl complexes were overlooked. Here, we report an antifungal activity assessment of three Ru-cyclopentadienyl complexes with some insights into their potential mode of action. Among these complexes, only the cationic species [Ru-ACN]+ and [Ru-ATZ]+ displayed a significant antifungal activity against different Candida strains, notably against the ones that did not respond to one of the most currently used antifungal drugs fluconazole (FCZ). However, no apparent activity was observed for the neutral species, Ru−Cl, thus indicating the important role of the cationic backbone of these complexes in their biological activity. We suggest that reactive oxygen species (ROS) generation might be involved in the mechanism of action of these complexes as, unlike neutral Ru−Cl, [Ru-ACN]+ and [Ru-ATZ]+ could generate intracellular concentration-dependent ROS. We also observed a correlation between the ruthenium cellular uptake, ROS generation and fungal growth inhibitory activity of the compounds. Furthermore, docking simulations showed that the CYP51 enzyme can form more energetically favorable complexes with [Ru-ATZ]+ than fluconazole (FCZ); this suggests that CYP51 inhibition could also be considered as a potential mode of action.  相似文献   

18.
Selected mechanical and biological properties of biodegradable elastomeric poly(ester-carbonate-urea-urethane)s (PECUUs) point towards their potential to be applied as scaffolds in tissue engineering. Here we explore their medical applicability taking into account their hemocompatibility and cytotoxicity. The influence of the ester monomer (derivatives of adipic and succinic acids), as well as diisocyanate type (IPDI and HDI) on the investigated PECUUs properties is presented. The presence of aliphatic diisocyanates, cyclic IPDI or linear HDI, governs the adhesion of Candida cells to these polymers offering the possibility to control the biofilm formation on their surface. In comparison to the linear form, cyclic diisocyanates with pentamethylene succinate or adipate fragments had two to three times lower biofilm mass formation on their surface. Reduced hemoglobin release from red blood cells observed during incubation of tested polymers with human erythrocytes suspension indicates their potential biocompatibility with human tissues. PECUUs were also able to support the growth of human keratinocytes HaCaT on their surface when coated with collagen. In effect, IPDI derivatives might possess a high potential for use in biomedical applications.  相似文献   

19.
Functionality of polymeric coating, especially in terms of anti-corrosive properties and stability, can be negatively influenced by formation of either bacterial or fungal biofilm on its surface. Herein, the epoxy-ester resin based polymeric coating was filled with pigments (natural silicon dioxide diatomite, natural wollastonite, tungstate and molybdate). Pigments was modified by conducting polymers (polyaniline phosphate, polypyrrole phosphate, poly(p-phenylenediamine) phosphate and ZnFe2O4). Impact of modified pigments on the surface energy and formation of biofilm were tested. The use of various biofilm forming species of both the bacteria and fungi filled a knowledge gap about their behavior on polymeric coatings.  相似文献   

20.
Background: Asian sand dust (ASD) and Aspergillus fumigatus are known risk factors for airway mucosal inflammatory diseases. Bacterial and fungal biofilms commonly coexist in chronic rhinosinusitis and fungus balls. We evaluated the effects of ASD on the development of A. fumigatus biofilm formation on nasal epithelial cells. Methods: Primary nasal epithelial cells were cultured with A. fumigatus conidia with or without ASD for 72 h. The production of interleukin (IL)-6, IL-8, and transforming growth factor (TGF)-β1 from nasal epithelial cells was determined by the enzyme-linked immunosorbent assay. The effects of ASD on A. fumigatus biofilm formation were determined using crystal violet, concanavalin A, safranin staining, and confocal scanning laser microscopy. Results: ASD and A. fumigatus significantly enhanced the production of IL-6 and IL-8 from nasal epithelial cells. By coculturing A. fumigatus with ASD, the dry weight and safranin staining of the fungal biofilms significantly increased in a time-dependent manner. However, the increased level of crystal violet and concanavalin A stain decreased after 72 h of incubation. Conclusions: ASD and A. fumigatus induced the production of inflammatory chemical mediators from nasal epithelial cells. The exposure of A. fumigatus to ASD enhanced the formation of biofilms. The coexistence of ASD and A. fumigatus may increase the development of fungal biofilms and fungal inflammatory diseases in the sinonasal mucosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号