首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Communication between cells is crucial to preserve body homeostasis and health. Tightly controlled intercellular dialog is particularly relevant in the gut, where cells of the intestinal mucosa are constantly exposed to millions of microbes that have great impact on intestinal homeostasis by controlling barrier and immune functions. Recent knowledge involves extracellular vesicles (EVs) as mediators of such communication by transferring messenger bioactive molecules including proteins, lipids, and miRNAs between cells and tissues. The specific functions of EVs principally depend on the internal cargo, which upon delivery to target cells trigger signal events that modulate cellular functions. The vesicular cargo is greatly influenced by genetic, pathological, and environmental factors. This finding provides the basis for investigating potential clinical applications of EVs as therapeutic targets or diagnostic biomarkers. Here, we review current knowledge on the biogenesis and cargo composition of EVs in general terms. We then focus the attention to EVs released by cells of the intestinal mucosa and their impact on intestinal homeostasis in health and disease. We specifically highlight their role on epithelial barrier integrity, wound healing of epithelial cells, immunity, and microbiota shaping. Microbiota-derived EVs are not reviewed here.  相似文献   

2.
Extracellular vesicles (EVs) play an important role in intercellular communication and are involved in both physiological and pathological processes. In the central nervous system (CNS), EVs secreted from different brain cell types exert a sundry of functions, from modulation of astrocytic proliferation and microglial activation to neuronal protection and regeneration. However, the effect of aging on the biological functions of neural EVs is poorly understood. In this work, we studied the biological effects of small EVs (sEVs) isolated from neural cells maintained for 14 or 21 days in vitro (DIV). We found that EVs isolated from 14 DIV cultures reduced the extracellular levels of lactate dehydrogenase (LDH), the expression levels of the astrocytic protein GFAP, and the complexity of astrocyte architecture suggesting a role in lowering the reactivity of astrocytes, while EVs produced by 21 DIV cells did not show any of the above effects. These results in an in vitro model pave the way to evaluate whether similar results occur in vivo and through what mechanisms.  相似文献   

3.
Existing treatment methods encounter difficulties in effectively promoting skin wound healing, making this a serious challenge for clinical treatment. Extracellular vesicles (EVs) secreted by stem cells have been proven to contribute to the regeneration and repair of wound tissue, but they cannot be targeted and sustained, which seriously limits their current therapeutic potential. The recombinant human collagen III protein (rhCol III) has the advantages of good water solubility, an absence of hidden viral dangers, a low rejection rate and a stable production process. In order to achieve a site-specific sustained release of EVs, we prepared a rhCol III hydrogel by cross-linking with transglutaminase (TGase) from Streptomyces mobaraensis, which has a uniform pore size and good biocompatibility. The release profile of the rhCol III-EVs hydrogel confirmed that the rhCol III hydrogel could slowly release EVs into the external environment. Herein, the rhCol III-EVs hydrogel effectively promoted macrophage changing from type M1 to type M2, the migration ability of L929 cells and the angiogenesis of human umbilical vein endothelial cells (HUVECs). Furthermore, the rhCol III-EVs hydrogel is shown to promote wound healing by inhibiting the inflammatory response and promoting cell proliferation and angiogenesis in a diabetic rat skin injury model. The reported results indicate that the rhCol III-EVs hydrogel could be used as a new biological material for EV delivery, and has a significant application value in skin wound healing.  相似文献   

4.
Extracellular vesicles (EVs) derived from mesenchymal stem cells isolated from both bone marrow (BMSCs) and adipose tissue (ADSCs) show potential therapeutic effects. These vesicles often show a similar beneficial effect on tissue regeneration, but in some contexts, they exert different biological properties. To date, a comparison of their molecular cargo that could explain the different biological effect is not available. Here, we demonstrated that ADSC-EVs, and not BMSC-EVs, promote wound healing on a murine model of diabetic wounds. Besides a general similarity, the bioinformatic analysis of their protein and miRNA cargo highlighted important differences between these two types of EVs. Molecules present exclusively in ADSC-EVs were highly correlated to angiogenesis, whereas those expressed in BMSC-EVs were preferentially involved in cellular proliferation. Finally, in vitro analysis confirmed that both ADSC and BMSC-EVs exploited beneficial effect on cells involved in skin wound healing such as fibroblasts, keratinocytes and endothelial cells, but through different cellular processes. Consistent with the bioinformatic analyses, BMSC-EVs were shown to mainly promote proliferation, whereas ADSC-EVs demonstrated a major effect on angiogenesis. Taken together, these results provide deeper comparative information on the cargo of ADSC-EVs and BMSC-EVs and the impact on regenerative processes essential for diabetic wound healing.  相似文献   

5.
Extracellular vesicles (EVs) are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in) EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.  相似文献   

6.
Gingival regeneration aims at restoring the architecture and functionality of oral damaged tissue. Different biomaterials or biological materials have been tested for tissue repair, such as platelet concentrates such as PL. In this article, the use of extracellular vesicles (EVs) derived from platelet lysate (PL) and their combination with hyaluronic acid biomaterials (HA) in an in vitro wound healing assay is investigated. EVs were isolated by size exclusion chromatography from PL. In addition, HA gels were formulated with PL or EVs. EVs or HA combined with EVs (HA-EVs) were tested in vitro in gingival fibroblasts and keratinocytes for biocompatibility (LDH activity and metabolic activity) and by an in vitro wound-healing assay and gene expression analysis. EVs and EVs-HA treatments were biocompatible in gingival fibroblasts and keratinocytes and showed an increase in wound healing in vitro compared to control. Moreover, changes in gene expression related to extracellular matrix remodeling were observed after the treatment with EVs. EVs can be combined with HA biomaterials, showing good biocompatibility and preserving their activity and functionality. Therefore, platelet-derived EVs could emerge as a new application for periodontal regeneration in combination with biomaterials in order to enhance their clinical use.  相似文献   

7.
After myocardial infarction (MI), a strong inflammatory response takes place in the heart to remove the dead tissue resulting from ischemic injury. A growing body of evidence suggests that timely resolution of this inflammatory process may aid in the prevention of adverse cardiac remodeling and heart failure post-MI. The present challenge is to find a way to stimulate this process without interfering with the reparative role of the immune system. Extracellular vesicles (EVs) are natural membrane particles that are released by cells and carry different macromolecules, including proteins and non-coding RNAs. In recent years, EVs derived from various stem and progenitor cells have been demonstrated to possess regenerative properties. They can provide cardioprotection via several mechanisms of action, including immunomodulation. In this review, we summarize the role of the innate immune system in post-MI healing. We then discuss the mechanisms by which EVs modulate cardiac inflammation in preclinical models of myocardial injury through regulation of monocyte influx and macrophage function. Finally, we provide suggestions for further optimization of EV-based therapy to improve its potential for the treatment of MI.  相似文献   

8.
Extracellular vesicles (EVs) are composed of lipid bilayer membranes and contain various molecules, such as mRNA and microRNA (miRNA), that regulate the functions of the recipient cell. Recent studies have reported the importance of EV-mediated intercellular communication in the brain. The brain contains several types of cells, including neurons and glial cells. Among them, astrocytes are the most abundant glial cells in the mammalian brain and play a wide range of roles, from structural maintenance of the brain to regulation of neurotransmission. Furthermore, since astrocytes can take up EVs, it is possible that EVs originating from inside and outside the brain affect astrocyte function, which in turn affects brain function. However, it has not been fully clarified whether the specific targeting mechanism of EVs to astrocytes as recipient cells exists. In recent years, EVs have attracted attention as a cell-targeted therapeutic approach in various organs, and elucidation of the targeting mechanism of EVs to astrocytes may pave the way for new therapies for brain diseases. In this review, we focus on EVs in the brain that affect astrocyte function and discuss the targeting mechanism of EVs to astrocytes.  相似文献   

9.
The nano-sized membrane enclosed extracellular vesicles (EVs) released by virtually all cell types play an essential role in intercellular communication via delivering bio-molecules, such as nucleic acids, proteins, lipids, and other molecules to recipient cells. By mediating an active and steady-state cell-to-cell communication, EVs contribute to regulating and preserving cellular homeostasis. On the other hand, EVs can also spread pathogen-derived molecules during infections, subverting the host immune responses during infections and thus worsening pathophysiological processes. In recent years, the biological functioning of EVs has become a widespread research field in basic and clinical branches of medical sciences due to their potential role in therapeutic applications for several diseases. This review aims to summarize the main recent findings regarding the implication of EVs shed by human macrophages (MΦ-EVs) and how they can modulate the host immune response to control or increase the damage caused by infectious agents. We will also present the methods used to describe MΦ-EVs, as well as the potential of these EVs as disease diagnostic tools for some human pathogens. We believe that an in-depth understanding of the host–pathogen interactions mediated by MΦ-EVs may trigger the development of innovative therapeutic strategies against infectious diseases.  相似文献   

10.
11.
Extracellular vesicles (EVs) serve as trafficking vehicles and intercellular communication tools. Their cargo molecules directly reflect characteristics of their parental cell. This includes information on cell identity and specific cellular conditions, ranging from normal to pathological states. In cancer, the content of EVs derived from tumor cells is altered and can induce oncogenic reprogramming of target cells. As a result, tumor-derived EVs compromise antitumor immunity and promote cancer progression and spreading. However, this pro-oncogenic phenotype is constantly being challenged by EVs derived from the local tumor microenvironment and from remote sources. Here, we summarize the role of EVs in the tumor–immune cross-talk that includes, but is not limited to, immune cells in the tumor microenvironment. We discuss the potential of remotely released EVs from the microbiome and during physical activity to shape the tumor–immune cross-talk, directly or indirectly, and confer antitumor activity. We further discuss the role of proinflammatory EVs in the temporal development of the tumor–immune interactions and their potential use for cancer diagnostics.  相似文献   

12.
13.
Extracellular vesicles (EVs) are complex phospholipidic structures actively released by cells. EVs are recognized as powerful means of intercellular communication since they contain many signaling molecules (including lipids, proteins, and nucleic acids). In parallel, changes in epigenetic processes can lead to changes in gene function and finally lead to disease onset and progression. Recent breakthroughs have revealed the complex roles of non-coding RNAs (microRNAs (miRNAs) and long non-coding RNAs (lncRNAs)) in epigenetic regulation. Moreover, a substantial body of evidence demonstrates that non-coding RNAs can be shuttled among the cells and tissues via EVs, allowing non-coding RNAs to reach distant cells and exert systemic effects. Resident bone cells, including osteoclasts, osteoblasts, osteocytes, and endothelial cells, are tightly regulated by non-coding RNAs, and many of them can be exported from the cells to neighboring ones through EVs, triggering pathological conditions. For these reasons, researchers have also started to exploit EVs as a theranostic tool to address osteoporosis. In this review, we summarize some recent findings regarding the EVs’ involvement in the fine regulation of non-coding RNAs in the context of bone metabolism and osteoporosis.  相似文献   

14.
Composite tissue injuries (CTI) are common among US Military Service members during combat operations, and carry a high potential of morbidity. Furthermore, CTI are often complicated due to an altered wound healing response, resulting in part from a dysregulation of the innate and adaptive immune responses. Unlike normal wound healing, in CTI, disruptions occur in innate immune responses, altering neutrophil functions, macrophage activation and polarization, further impacting the functions of T regulatory cells. Additionally, the biological underpinnings of these unfavorable wound healing conditions are multifactorial, including various processes, such as: ischemia, hypoxia, low nutrient levels, and altered cell metabolic pathways, among others, all of which are thought to trigger anergy in immune cells and destabilize adaptive immune responses. As a result, impaired wound healing is common in CTI. Herein, we review the altered innate and adaptive immune cells and their metabolic status and responses following CTI, and discuss the role a multi-pronged immunomodulatory approach may play in facilitating improved outcomes for afflicted patients.  相似文献   

15.
The healing of skin wounds involves the activation and recruitment of various immune cell types, many of which are believed to contribute significantly to different aspects of the repair process. Roles for immune cells have been described in practically all stages of wound healing, including hemostasis, inflammation, proliferation and scar formation/remodeling. Over the last decade, tools to deplete immune cell populations in animal models have become more advanced, leading to a surge in the number of studies examining the function of specific immune cell types in skin repair. In this review, we will summarize what is known about distinct immune cell types in cutaneous wound healing, with an emphasis on data from animal studies in which specific cell types have been targeted.  相似文献   

16.
Extracellular vesicles (EVs) are small, membranous structures involved in intercellular communication. Here, we analyzed the effects of thyroid cancer-derived EVs on the properties of normal thyroid cells and cells contributing to the tumor microenvironment. EVs isolated from thyroid cancer cell lines (CGTH, FTC-133, 8505c, TPC-1 and BcPAP) were used for treatment of normal thyroid cells (NTHY), as well as monocytes and endothelial cells (HUVEC). EVs’ size/number were analyzed by flow cytometry and confocal microscopy. Gene expression, protein level and localization were investigated by qRT-PCR, WB and ICC/IF, respectively. Proliferation, migration and tube formation were analyzed. When compared with NTHY, CGTH and BcPAP secreted significantly more EVs. Treatment of NTHY with cancer-derived EVs changed the expression of tetraspanin genes, but did not affect proliferation and migration. Cancer-derived EVs suppressed tube formation by endothelial cells and did not affect the phagocytic index of monocytes. The number of 6 μm size fraction of cancer-derived EVs correlated negatively with the CD63 and CD81 expression in NTHY cells, as well as positively with angiogenesis in vitro. Thyroid cancer-derived EVs can affect the expression of tetraspanins in normal thyroid cells. It is possible that 6 μm EVs contribute to the regulation of NTHY gene expression and angiogenesis.  相似文献   

17.
Extracellular vesicles (EV) deliver cargoes such as nucleic acids, proteins, and lipids between cells and serve as an intercellular communicator. As it is revealed that most of the functions associated to EVs are closely related to the immune response, the important role of EVs in inflammatory diseases is emerging. EVs can be functionalized through EV surface engineering and endow targeting moiety that allows for the target specificity for therapeutic applications in inflammatory diseases. Moreover, engineered EVs are considered as promising nanoparticles to develop personalized therapeutic carriers. In this review, we highlight the role of EVs in various inflammatory diseases, the application of EV as anti-inflammatory therapeutics, and the current state of the art in EV engineering techniques.  相似文献   

18.
In this article, a hybrid system of hydrogel/frog egg-like microspheres (H-FMS) formed by the combination of coaxial electrostatic spraying and freeze-drying was introduced for enhancing wound healing efficiency through the sustained release of Rana chensinensis skin peptides (RCSPs). The porous PVA/gelatin hydrogel were obtained and frog egg-like microspheres (FMS) of sodium alginate (SA), shaping uniform and smooth, were embedded into hydrogel. Based on PVA/gelatin hydrogel, the FMS addition increased the water absorption of hydrogel to 1,105%. RCSPs were more effectively encapsulated into FMS than solid microspheres (MS). Not only does the H-FMS act as good “depots” for sustained release of RCSPs over 9 days, without exhibiting obvious burst release, but also show good biocompatibility in vitro. In vivo studies on wound healing as well as the histology of fibroblasts, re-epithelialization, inflammation, and hair follicles indicated that the structure of H-FMS released RCSPs continuously and promoted wound healing in rats significantly.  相似文献   

19.
Along with cytokines, extracellular vesicles (EVs) released by immune cells in the joint contribute to osteoarthritis (OA) pathogenesis. By high-resolution flow cytometry, we characterized 18 surface markers and 4 proinflammatory cytokines carried by EVs of various sizes in plasma and synovial fluid (SF) from individuals with knee OA, with a primary focus on immune cells that play a major role in OA pathogenesis. By multiplex immunoassay, we also measured concentrations of cytokines within (endo) and outside (exo) EVs. EVs carrying HLA-DR, -DP and -DQ were the most enriched subpopulations in SF relative to plasma (25–50-fold higher depending on size), suggesting a major contribution to the SF EV pool from infiltrating immune cells in OA joints. In contrast, the CD34+ medium and small EVs, reflecting hematopoietic stem cells, progenitor cells, and endothelial cells, were the most significantly enriched subpopulations in plasma relative to SF (7.3- and 7.7-fold higher). Ratios of EVs derived from neutrophils and lymphocytes were highly correlated between SF and plasma, indicating that plasma EVs could reflect OA severity and serve as systemic biomarkers of OA joint pathogenesis. Select subsets of plasma EVs might also provide next generation autologous biological products for intra-articular therapy of OA joints.  相似文献   

20.
Mesenchymal stem cells (MSCs) have been adopted in various preclinical and clinical studies because of their multipotency and low immunogenicity. However, numerous obstacles relating to safety issues remain. Therefore, MSC-derived extracellular vesicles (EVs) have been recently employed. EVs are nano-sized endoplasmic reticulum particles generated and released in cells that have similar biological functions to their origin cells. EVs act as cargo for bioactive molecules such as proteins and genetic materials and facilitate tissue regeneration. EVs obtained from adipose-derived MSC (ADMSC) also have neuroprotective and neurogenesis effects. On the basis of the versatile effects of EVs, we aimed to enhance the neural differentiation ability of ADMSC-derived EVs by elucidating the neurogenic-differentiation process. ADMSC-derived EVs isolated from neurogenesis conditioned media (differentiated EVs, dEVs) increased neurogenic ability by altering innate microRNA expression and cytokine composition. Consequently, dEVs promoted neuronal differentiation of neural progenitor cells in vitro, suggesting that dEVs are a prospective candidate for EV-based neurological disorder regeneration therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号