首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular vesicles (EVs) released by bone marrow stromal cells (BMSCs) have been shown to act as a transporter of bioactive molecules such as RNAs and proteins in the therapeutic actions of BMSCs in various diseases. Although EV therapy holds great promise to be a safer cell-free therapy overcoming issues related to cell therapy, manufacturing processes that offer scalable and reproducible EV production have not been established. Robust and scalable BMSC manufacturing methods have been shown to enhance EV production; however, the effects on EV quality remain less studied. Here, using human BMSCs isolated from nine healthy donors, we examined the effects of high-performance culture media that can rapidly expand BMSCs on EV production and quality in comparison with the conventional culture medium. We found significantly increased EV production from BMSCs cultured in the high-performance media without altering their multipotency and immunophenotypes. RNA sequencing revealed that RNA contents in EVs from high-performance media were significantly reduced with altered profiles of microRNA enriched in those related to cellular growth and proliferation in the pathway analysis. Given that pre-clinical studies at the laboratory scale often use the conventional medium, these findings could account for the discrepancy in outcomes between pre-clinical and clinical studies. Therefore, this study highlights the importance of selecting proper culture conditions for scalable and reproducible EV manufacturing.  相似文献   

2.
Sleep is very important for overall health and quality of life, while sleep disorder has been associated with several human diseases, namely cardiovascular, metabolic, cognitive, and cancer-related alterations. Obstructive sleep apnea (OSA) is the most common respiratory sleep-disordered breathing, which is caused by the recurrent collapse of the upper airway during sleep. OSA has emerged as a major public health problem and increasing evidence suggests that untreated OSA can lead to the development of various diseases including neurodegenerative diseases. In addition, OSA may lead to decreased blood oxygenation and fragmentation of the sleep cycle. The formation of free radicals or reactive oxygen species (ROS) can emerge and react with nitric oxide (NO) to produce peroxynitrite, thereby diminishing the bioavailability of NO. Hypoxia, the hallmark of OSA, refers to a decline of tissue oxygen saturation and affects several types of cells, playing cell-to-cell communication a vital role in the outcome of this interplay. Red blood cells (RBCs) are considered transporters of oxygen and nutrients to the tissues, and these RBCs are important interorgan communication systems with additional functions, including participation in the control of systemic NO metabolism, redox regulation, blood rheology, and viscosity. RBCs have been shown to induce endothelial dysfunction and increase cardiac injury. The mechanistic links between changes of RBC functional properties and cardiovascular are largely unknown. Extracellular vesicles (EVs) are secreted by most cell types and released in biological fluids both under physiological and pathological conditions. EVs are involved in intercellular communication by transferring complex cargoes including proteins, lipids, and nucleic acids from donor cells to recipient cells. Advancing our knowledge about mechanisms of RBC-EVs formation and their pathophysiological relevance may help to shed light on circulating EVs and to translate their application to clinical practice. We will focus on the potential use of RBC-EVs as valuable diagnostic and prognostic biomarkers and state-specific cargoes, and possibilities as therapeutic vehicles for drug and gene delivery. The use of RBC-EVs as a precision medicine for the diagnosis and treatment of the patient with sleep disorder will improve the prognosis and the quality of life in patients with cardiovascular disease (CVD).  相似文献   

3.
Extracellular vesicles (EVs) are cell-derived nanostructures that mediate intercellular communication by delivering complex signals in normal tissues and cancer. The cellular coordination required for tumor development and maintenance is mediated, in part, through EV transport of molecular cargo to resident and distant cells. Most studies on EV-mediated signaling have been performed in two-dimensional (2D) monolayer cell cultures, largely because of their simplicity and high-throughput screening capacity. Three-dimensional (3D) cell cultures can be used to study cell-to-cell and cell-to-matrix interactions, enabling the study of EV-mediated cellular communication. 3D cultures may best model the role of EVs in formation of the tumor microenvironment (TME) and cancer cell-stromal interactions that sustain tumor growth. In this review, we discuss EV biology in 3D culture correlates of the TME. This includes EV communication between cell types of the TME, differences in EV biogenesis and signaling associated with differing scaffold choices and in scaffold-free 3D cultures and cultivation of the premetastatic niche. An understanding of EV biogenesis and signaling within a 3D TME will improve culture correlates of oncogenesis, enable molecular control of the TME and aid development of drug delivery tools based on EV-mediated signaling.  相似文献   

4.
Acute kidney injury (AKI)––the sudden loss of kidney function due to tissue damage and subsequent progression to chronic kidney disease––has high morbidity and mortality rates and is a serious worldwide clinical problem. Current AKI diagnosis, which relies on measuring serum creatinine levels and urine output, cannot sensitively and promptly report on the state of damage. To address the shortcomings of these traditional diagnosis tools, several molecular biomarkers have been developed to facilitate the identification and ensuing monitoring of AKI. Nanosized membrane-bound extracellular vesicles (EVs) in body fluids have emerged as excellent sources for discovering such biomarkers. Besides this diagnostic purpose, EVs are also being extensively exploited to deliver therapeutic macromolecules to damaged kidney cells to ameliorate AKI. Consequently, many successful AKI biomarker findings and therapeutic applications based on EVs have been made. Here, we review our understanding of how EVs can help with the early identification and accurate monitoring of AKI and be used therapeutically. We will further discuss where current EV-based AKI diagnosis and therapeutic applications fall short and where future innovations could lead us.  相似文献   

5.
The microbiota constitutes an important part of the holobiont in which extracellular vesicles (EVs) are key players in health, especially regarding inter- and intra-kingdom communications. Analysis of EVs from the red blood cell concentrates of healthy donors revealed variable amounts of OmpA and LPS in 12 of the 14 analyzed samples, providing indirect experimental evidence of the presence of microbiota EVs in human circulating blood in the absence of barrier disruption. To investigate the role of these microbiota EVs, we tracked the fusion of fluorescent Escherichia coli EVs with blood mononuclear cells and showed that, in the circulating blood, these EVs interacted almost exclusively with monocytes. This study demonstrates that bacterial EVs constitute critical elements of the host–microbiota cellular communication. The analysis of bacterial EVs should thus be systematically included in any characterization of human EVs.  相似文献   

6.
Extracellular vesicles (EVs) play an important role in intercellular communication and are involved in both physiological and pathological processes. In the central nervous system (CNS), EVs secreted from different brain cell types exert a sundry of functions, from modulation of astrocytic proliferation and microglial activation to neuronal protection and regeneration. However, the effect of aging on the biological functions of neural EVs is poorly understood. In this work, we studied the biological effects of small EVs (sEVs) isolated from neural cells maintained for 14 or 21 days in vitro (DIV). We found that EVs isolated from 14 DIV cultures reduced the extracellular levels of lactate dehydrogenase (LDH), the expression levels of the astrocytic protein GFAP, and the complexity of astrocyte architecture suggesting a role in lowering the reactivity of astrocytes, while EVs produced by 21 DIV cells did not show any of the above effects. These results in an in vitro model pave the way to evaluate whether similar results occur in vivo and through what mechanisms.  相似文献   

7.
Intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), is associated with cardiovascular and metabolic dysfunction. However, the mechanisms underlying these morbidities remain poorly delineated. Extracellular vesicles (EVs) mediate intercellular communications, play pivotal roles in a multitude of physiological and pathological processes, and could mediate IH-induced cellular effects. Here, the effects of IH on human primary cells and the release of EVs were examined. Microvascular endothelial cells (HMVEC-d), THP1 monocytes, THP1 macrophages M0, THP1 macrophages M1, THP1 macrophages M2, pre-adipocytes, and differentiated adipocytes (HAd) were exposed to either room air (RA) or IH for 24 h. Secreted EVs were isolated and characterized using transmission electron microscopy, nanoparticle tracking analysis, and Western blotting. The effects of each of the cell-derived EVs on endothelial cell (EC) monolayer barrier integrity, on naïve THP1 macrophage polarity, and on adipocyte insulin sensitivity were also evaluated. IH did not alter EVs cell quantal release, but IH-EVs derived from HMVEC-d (p < 0.01), THP1 M0 (p < 0.01) and HAd (p < 0.05) significantly disrupted HMVEC-d monolayer integrity, particularly after H2O2 pre-conditioning. IH-EVs from HMVEC-d and THP1 M0 elicited M2-polarity changes did not alter insulin sensitivity responses. IH induces cell-selective changes in EVs cargo, which primarily seem to target the emergence of endothelial dysfunction. Thus, changes in EVs cargo from selected cell sources in vivo may play causal roles in some of the adverse outcomes associated with OSA.  相似文献   

8.
Endosome-derived small extracellular vesicles (EVs), often referred to as exosomes, are produced by almost all, if not all, cell types, and are critical for intercellular communication. They are composed of a lipid bilayer associated with membrane proteins and contain a payload of lipids, proteins and regulatory RNAs that depends on the parental cell physiological condition. By transferring their “cargo”, exosomes can modulate the phenotype of neighboring and distant cells. Stem cells (SC) were widely studied for therapeutic applications regarding their regenerative/reparative potential as well as their immunomodulatory properties. Whether from autologous or allogeneic source, SC beneficial effects in terms of repair and regeneration are largely attributed to their paracrine signaling notably through secreted EVs. Subsequently, SC-derived EVs have been investigated for the treatment of various diseases, including inflammatory skin disorders, and are today fast-track cell-free tools for regenerative/reparative strategies. Yet, their clinical application is still facing considerable challenges, including production and isolation procedures, and optimal cell source. Within the emerging concept of “allogeneic-driven benefit” for SC-based therapies, the use of EVs from allogeneic sources becomes the pragmatic choice although a universal allogeneic cell source is still needed. As a unique temporary organ that ensures the mutual coexistence of two allogeneic organisms, mother and fetus, the human placenta offers a persuasive allogeneic stem cell source for development of therapeutic EVs. Advancing cell-free therapeutics nurtures great hope and provides new perspectives for the development of safe and effective treatment in regenerative/reparative medicine and beyond. We will outline the current state of the art in regard of EVs, summarize their therapeutic potential in the context of skin inflammatory disorders, and discuss their translational advantages and hurdles.  相似文献   

9.
Extracellular vesicles (EVs) are critical elements of cell–cell communication. Here, we characterized the outer membrane vesicles (OMVs) released by specific clones of Escherichia coli isolated from the Long-Term Evolution Experiment after 50,000 generations (50K) of adaptation to glucose minimal medium. Compared with their ancestor, the evolved clones produce small OMVs but also larger ones which display variable amounts of both OmpA and LPS. Tracking ancestral, fluorescently labelled OMVs revealed that they fuse with both ancestral- and 50K-evolved cells, albeit in different proportions. We quantified that less than 2% of the cells from one 50K-evolved clone acquired the fluorescence delivered by OMVs from the ancestral strain but that one cell concomitantly fuses with several OMVs. Globally, our results showed that OMV production in E. coli is a phenotype that varies along bacterial evolution and question the contribution of OMVs-mediated interactions in bacterial adaptation.  相似文献   

10.
Cell senescence is associated with the secretion of many factors, the so-called “senescence-associated secretory phenotype”, which may alter tissue microenvironment, stimulating the organism to clean up senescent cells and replace them with newly divided ones. Therefore, although no longer dividing, these cells are still metabolically active and influence the surrounding tissue. Much attention has been recently focused not only on soluble factors released by senescent cells, but also on extracellular vesicles as conveyors of senescence signals outside the cell. Here, we give an overview of the role of extracellular vesicles in biological processes and signaling pathways related to senescence and aging.  相似文献   

11.
Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated.  相似文献   

12.
Spermatogonial stem cells (SSCs) provide the basis for lifelong male fertility through self-renewal and differentiation. Prepubertal male cancer patients may be rendered infertile by gonadotoxic chemotherapy and, unlike sexually mature men, cannot store sperm. Alternatively, testicular biopsies taken prior to treatment may be used to restore fertility in adulthood. Testicular SSC populations are limited, and in vitro culture systems are required to increase numbers of SSCs for treatment, demanding culture systems for SSC propagation. Using the pig as a non-rodent model, we developed culture systems to expand spermatogonia from immature testis tissue, comparing different feeders (Sertoli cells, peritubular myoid cells (PMCs) and pig fetal fibroblasts (PFFs)). Spermatogonia co-cultured with Sertoli cells, PMCs and PFFs had comparable rates of proliferation and apoptosis. To elucidate the mechanism behind the beneficial nature of feeder layers, we investigated the role of extracellular vesicles in crosstalk between spermatogonia and feeder cells. Sertoli cell-released exosomes are incorporated by spermatogonia, and inhibition of exosomal release reduces spermatogonial proliferation. Together, these results show that PMCs, PFFs and Sertoli cells promote spermatogonial proliferation in co-culture, with exosomal exchange representing one possible mechanism. Further characterization of exosomal cargo may ultimately allow the development of feeder-free culture systems for clinical use.  相似文献   

13.
Peritoneal dialysis (PD) represents the dialysis modality of choice for pediatric patients with end-stage kidney disease. Indeed, compared with hemodialysis (HD), it offers many advantages, including more flexibility, reduction of the risk of hospital-acquired infections, preservation of residual kidney function, and a better quality of life. However, despite these positive aspects, PD may be associated with several long-term complications that may impair both patient’s general health and PD adequacy. In this view, chronic inflammation, caused by different factors, has a detrimental impact on the structure and function of the peritoneal membrane, leading to sclerosis and consequent PD failure both in adults and children. Although several studies investigated the complex pathogenic pathways underlying peritoneal membrane alterations, these processes remain still to explore. Understanding these mechanisms may provide novel approaches to improve the clinical outcome of pediatric PD patients through the identification of subjects at high risk of complications and the implementation of personalized interventions. In this review, we discuss the main experimental and clinical experiences exploring the potentiality of the proteomic analysis of peritoneal fluids and extracellular vesicles as a source of novel biomarkers in pediatric peritoneal dialysis.  相似文献   

14.
Molecular diagnostics based on discovery research holds the promise of improving screening methods for prostate cancer (PCa). Furthermore, the congregated information prompts the question whether the urinary extracellular vesicles (uEV) proteome has been thoroughly explored, especially at the proteome level. In fact, most extracellular vesicles (EV) based biomarker studies have mainly targeted plasma or serum. Therefore, in this study, we aim to inquire about possible strategies for urinary biomarker discovery particularly focused on the proteome of urine EVs. Proteomics data deposited in the PRIDE archive were reanalyzed to target identifications of potential PCa markers. Network analysis of the markers proposed by different prostate cancer studies revealed moderate overlap. The recent throughput improvements in mass spectrometry together with the network analysis performed in this study, suggest that a larger standardized cohort may provide potential biomarkers that are able to fully characterize the heterogeneity of PCa. According to our analysis PCa studies based on urinary EV proteome presents higher protein coverage compared to plasma, plasma EV, and voided urine proteome. This together with a direct interaction of the prostate gland and urethra makes uEVs an attractive option for protein biomarker studies. In addition, urinary proteome based PCa studies must also evaluate samples from bladder and renal cancers to assess specificity for PCa.  相似文献   

15.
Communication between cells and the microenvironment is a complex, yet crucial, element in the development and progression of varied physiological and pathological processes. Accumulating evidence in different disease models highlights roles of extracellular vesicles (EVs), either in modulating cell signaling paracrine mechanism(s) or harnessing their therapeutic moiety. Of interest, the human cornea functions as a refractive and transparent barrier that protects the intraocular elements from the external environment. Corneal trauma at the ocular surface may lead to diminished corneal clarity and detrimental effects on visual acuity. The aberrant activation of corneal stromal cells, which leads to myofibroblast differentiation and a disorganized extracellular matrix is a central biological process that may result in corneal fibrosis/scarring. In recent years, understanding the pathological and therapeutic EV mechanism(s) of action in the context of corneal biology has been a topic of increasing interest. In this review, we describe the clinical relevance of corneal fibrosis/scarring and how corneal stromal cells contribute to wound repair and their generation of the stromal haze. Furthermore, we will delve into EV characterization, their subtypes, and the pathological and therapeutic roles they play in corneal scarring/fibrosis.  相似文献   

16.
Gestational diabetes mellitus (GDM) increases risk of adverse pregnancy outcomes and maternal cardiovascular complications. It is widely believed that maternal endothelial dysfunction is a critical determinant of these risks, however, connections to maternal cardiac dysfunction and mechanisms of pathogenesis are unclear. Circulating extracellular vesicles (EVs) are emerging biomarkers that may provide insights into the pathogenesis of GDM. We examined the impact of GDM on maternal cardiac and vascular health in a rat model of diet-induced obesity-associated GDM. We observed a >3-fold increase in circulating levels of endothelial EVs (p < 0.01) and von Willebrand factor (p < 0.001) in GDM rats. A significant increase in mitochondrial DNA (mtDNA) within circulating extracellular vesicles was also observed suggesting possible mitochondrial dysfunction in the vasculature. This was supported by nicotinamide adenine dinucleotide deficiency in aortas of GDM mice. GDM was also associated with cardiac remodeling (increased LV mass) and a marked impairment in maternal diastolic function (increased isovolumetric relaxation time [IVRT], p < 0.01). Finally, we observed a strong positive correlation between endothelial EV levels and IVRT (r = 0.57, p < 0.05). In summary, we observed maternal vascular and cardiac dysfunction in rodent GDM accompanied by increased circulating endothelial EVs and EV-associated mitochondrial DNA. Our study highlights a novel method for assessment of vascular injury in GDM and highlights vascular mitochondrial injury as a possible therapeutic target.  相似文献   

17.
18.
Coronary artery disease (CAD), comprising both acute coronary syndromes (ACS) and chronic coronary syndromes (CCS), remains one of the most important killers throughout the entire world. ACS is often quickly diagnosed by either deviation on an electrocardiogram or elevated levels of troponin, but CCS appears to be more complicated. The most used noninvasive strategies to diagnose CCS are coronary computed tomography and perfusion imaging. Although both show reasonable accuracy (80–90%), these modalities are becoming more and more subject of debate due to costs, radiation and increasing inappropriate use in low-risk patients. A reliable, blood-based biomarker is not available for CCS but would be of great clinical importance. Extracellular vesicles (EVs) are lipid-bilayer membrane vesicles containing bioactive contents e.g., proteins, lipids and nucleic acids. EVs are often referred to as the “liquid biopsy” since their contents reflect changes in the condition of the cell they originate from. Although EVs are studied extensively for their role as biomarkers in the cardiovascular field during the last decade, they are still not incorporated into clinical practice in this field. This review provides an overview on EV biomarkers in CCS and discusses the clinical and technological aspects important for successful clinical application of EVs.  相似文献   

19.
Tendon injuries represent over 30–50% of musculoskeletal disorders worldwide, yet the available therapies do not provide complete tendon repair/regeneration and full functionality restoring. Extracellular vesicles (EVs), membrane-enclosed nanoparticles, have emerged as the next breakthrough in tissue engineering and regenerative medicine to promote endogenous tissue regeneration. Here, we developed a 3D human in vitro model mimicking the signature of pathological tendon and used it to evaluate the influence that different platelet-derived EVs might have in tendon tissue repair mechanisms. For this, different EV populations isolated from platelets, small EVs (sEVs) and medium EVs (mEVs), were added to the culture media of human tendon-derived cells (hTDCs) cultured on isotropic nanofibrous scaffolds. The platelet-derived EVs increased the expression of tenogenic markers, promoted a healthy extracellular matrix (ECM) remodeling, and the synthesis of anti-inflammatory mediators. These findings suggest that platelet EVs provided relevant biochemical cues that potentiated a recovery of hTDCs phenotype from a diseased to a healthy state. Thus, this study opens new perspectives for the translation of platelet-derived EVs as therapeutics.  相似文献   

20.
Autoimmune demyelinating diseases—including multiple sclerosis, neuromyelitis optica spectrum disorder, anti-myelin oligodendrocyte glycoprotein-associated disease, acute disseminated encephalomyelitis, and glial fibrillary acidic protein (GFAP)-associated meningoencephalomyelitis—are a heterogeneous group of diseases even though their common pathology is characterized by neuroinflammation, loss of myelin, and reactive astrogliosis. The lack of safe pharmacological therapies has purported the notion that cell-based treatments could be introduced to cure these patients. Among stem cells, mesenchymal stem cells (MSCs), obtained from various sources, are considered to be the ones with more interesting features in the context of demyelinating disorders, given that their secretome is fully equipped with an array of anti-inflammatory and neuroprotective molecules, such as mRNAs, miRNAs, lipids, and proteins with multiple functions. In this review, we discuss the potential of cell-free therapeutics utilizing MSC secretome-derived extracellular vesicles—and in particular exosomes—in the treatment of autoimmune demyelinating diseases, and provide an outlook for studies of their future applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号