首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Maternal obesity predisposes for hepato-metabolic disorders early in life. However, the underlying mechanisms causing early onset dysfunction of the liver and metabolism remain elusive. Since obesity is associated with subacute chronic inflammation and accelerated aging, we test the hypothesis whether maternal obesity induces aging processes in the developing liver and determines thereby hepatic growth. To this end, maternal obesity was induced with high-fat diet (HFD) in C57BL/6N mice and male offspring were studied at the end of the lactation [postnatal day 21 (P21)]. Maternal obesity induced an obese body composition with metabolic inflammation and a marked hepatic growth restriction in the male offspring at P21. Proteomic and molecular analyses revealed three interrelated mechanisms that might account for the impaired hepatic growth pattern, indicating prematurely induced aging processes: (1) Increased DNA damage response (γH2AX), (2) significant upregulation of hepatocellular senescence markers (Cdnk1a, Cdkn2a); and (3) inhibition of hepatic insulin/insulin-like growth factor (IGF)-1-AKT-p38-FoxO1 signaling with an insufficient proliferative growth response. In conclusion, our murine data demonstrate that perinatal obesity induces an obese body composition in male offspring with hepatic growth restriction through a possible premature hepatic aging that is indicated by a pathologic sequence of inflammation, DNA damage, senescence, and signs of a possibly insufficient regenerative capacity.  相似文献   

2.
Angiopoietin-like protein 8 (ANGPTL8) is an hepatokine altered in several metabolic conditions, such as obesity, type 2 diabetes, dyslipidemia and nonalcoholic fatty liver disease (NAFLD). We sought to explore whether ANGPTL8 is involved in NAFLD amelioration after bariatric surgery in experimental models and patients with severe obesity. Plasma ANGPTL8 was measured in 170 individuals before and 6 months after bariatric surgery. Hepatic ANGPTL8 expression was evaluated in liver biopsies of patients with severe obesity undergoing bariatric surgery with available liver pathology analysis (n = 75), as well as in male Wistar rats with diet-induced obesity subjected to sham operation, sleeve gastrectomy or Roux-en-Y gastric bypass (RYGB) (n = 65). The effect of ANGPTL8 on lipogenesis was assessed in human HepG2 hepatocytes under palmitate-induced lipotoxic conditions. Plasma concentrations and hepatic expression of ANGPTL8 were increased in patients with obesity-associated NAFLD in relation to the degree of hepatic steatosis. Sleeve gastrectomy and RYGB improved hepatosteatosis and reduced the hepatic ANGPTL8 expression in the preclinical model of NAFLD. Interestingly, ANGPTL8 inhibited steatosis and expression of lipogenic factors (PPARG2, SREBF1, MOGAT2 and DGAT1) in palmitate-treated human hepatocytes. Together, ANGPTL8 is involved in the resolution of NAFLD after bariatric surgery partially by the inhibition of lipogenesis in steatotic hepatocytes.  相似文献   

3.
Biliverdin reductase A (BVR-A) is an enzyme involved in the regulation of insulin signalling. Knockout (KO) mice for hepatic BVR-A, on a high-fat diet, develop more severe glucose impairment and hepato-steatosis than the wild type, whereas loss of adipocyte BVR-A is associated with increased visceral adipose tissue (VAT) inflammation and adipocyte size. However, BVR-A expression in human VAT has not been investigated. We evaluated BVR-A mRNA expression levels by real-time PCR in the intra-operative omental biopsy of 38 obese subjects and investigated the association with metabolic impairment, VAT dysfunction, and biopsy-proven non-alcoholic fatty liver disease (NAFLD). Individuals with lower VAT BVR-A mRNA levels had significantly greater VAT IL-8 and Caspase 3 expression than those with higher BVR-A. Lower VAT BVR-A mRNA levels were associated with an increased adipocytes’ size. An association between lower VAT BVR-A expression and higher plasma gamma-glutamyl transpeptidase was also observed. Reduced VAT BVR-A was associated with NAFLD with an odds ratio of 1.38 (95% confidence interval: 1.02–1.9; χ2 test) and with AUROC = 0.89 (p = 0.002, 95% CI = 0.76–1.0). In conclusion, reduced BVR-A expression in omental adipose tissue is associated with VAT dysfunction and NAFLD, suggesting a possible involvement of BVR-A in the regulation of VAT homeostasis in presence of obesity.  相似文献   

4.
Ocular graft-versus-host disease (GVHD) is a major complication after allogeneic hematopoietic stem cell transplantation. Ocular GVHD affects recipients’ visual function and quality of life. Recent advanced research in this area has gradually attracted attention from a wide range of physicians and ophthalmologists. This review highlights the mechanism of immune processes and the molecular mechanism, including several inflammation cascades, pathogenic fibrosis, and stress-induced senescence related to ocular GVHD, in basic spectrum topics in this area. How the disease develops and what kinds of cells participate in ocular GVHD are discussed. Although the classical immune process is a main pathological pathway in this disease, senescence-associated changes in immune cells and stem cells may also drive this disease. The DNA damage response, p16/p21, and the expression of markers associated with the senescence-associated secretory phenotype (SASP) are seen in ocular tissue in GVHD. Macrophages, T cells, and mesenchymal cells from donors or recipients that increasingly infiltrate the ocular surface serve as the source of increased secretion of IL-6, which is a major SASP driver. Agents capable of reversing the changes, including senolytic reagents or those that can suppress the SASP seen in GVHD, provide new potential targets for the treatment of GVHD. Creating innovative therapies for ocular GVHD is necessary to treat this intractable ocular disease.  相似文献   

5.
Phytochemicals that interrupt adipocyte lifecycle can provide anti-obesity effects. 1,2,3,4,6-penta-O-galloyl-d-glucose (PGG) is a tannin with two isomers that occurs widely in plants and exhibits various pharmacological activities. The aim of the investigation is to comprehensively examine effects of PGG isomer(s) on adipocyte lifecycle and diet-induced obesity. Human mesenchymal stem cells (hMSC), 3T3-L1 fibroblasts, and H4IIE hepatoma cells were used to determine the effects of PGG isomers on cell viability and adipogenesis. Mice with diet-induced obesity were generated from male C57/BL6 mice fed with a 45% high fat diet. Oral administration of β-PGG (0.1 and 5 mg/kg) lasted for 14 weeks. Viability was reduced by repeated PGG treatment in hMSC, preadipocytes, and cells under differentiation. PGG mainly induces apoptosis, and this effect is independent of its insulin mimetic action. In vivo, administration of β-PGG attenuated shortening of the colon, hyperlipidaemia, fat cells and islet hypertrophy in DIO mice. Hepatic steatosis and related gene expression were improved along with glucose intolerance. Increased serum adiponectin, leptin, and glucagon-like peptide-1 levels were also observed. In conclusion, repeated PGG treatment interrupts the adipocyte lifecycle. PGG administration reduces adiposity and fatty liver development in DIO mice, and therefore, PGG could aid in clinical management of obesity.  相似文献   

6.
Non-alcoholic fatty liver disease (NAFLD) represents an increasing global health burden. Cellular senescence develops in response to cellular injury, leading not only to cell cycle arrest but also to alterations of the cellular phenotype and metabolic functions. In this review, we critically discuss the currently existing evidence for the involvement of cellular senescence in NAFLD in order to identify areas requiring further exploration. Hepatocyte senescence can be a central pathomechanism as it may foster intracellular fat accumulation, fibrosis and inflammation, also due to secretion of senescence-associated inflammatory mediators. However, in some non-parenchymal liver cell types, such as hepatic stellate cells, senescence may be beneficial by reducing the extracellular matrix deposition and thereby reducing fibrosis. Deciphering the detailed interaction between NAFLD and cellular senescence will be essential to discover novel therapeutic targets halting disease progression.  相似文献   

7.
Functional studies of organisms and human models have revealed that epigenetic changes can significantly impact the process of aging. Non-coding RNA (ncRNA), one of epigenetic regulators, plays an important role in modifying the expression of mRNAs and their proteins. It can mediate the phenotype of cells. It has been reported that nc886 (=vtRNA2-1 or pre-miR-886), a long ncRNA, can suppress tumor formation and photo-damages of keratinocytes caused by UVB. The aim of this study was to determine the role of nc886 in replicative senescence of fibroblasts and determine whether substances capable of controlling nc886 expression could regulate cellular senescence. In replicative senescence fibroblasts, nc886 expression was decreased while methylated nc886 was increased. There were changes of senescence biomarkers including SA-β-gal activity and expression of p16INK4A and p21Waf1/Cip1 in senescent cells. These findings indicate that the decrease of nc886 associated with aging is related to cellular senescence of fibroblasts and that increasing nc886 expression has potential to suppress cellular senescence. AbsoluTea Concentrate 2.0 (ATC) increased nc886 expression and ameliorated cellular senescence of fibroblasts by inhibiting age-related biomarkers. These results indicate that nc886 has potential as a new target for anti-aging and that ATC can be a potent epigenetic anti-aging ingredient.  相似文献   

8.
Senescent cells accumulate in the adipose tissue (AT) of individuals with obesity and secrete multiple factors that constitute the senescence-associated secretory phenotype (SASP). This paper aimed at the identification of B cells with a SASP phenotype in the AT, as compared to the peripheral blood, of individuals with obesity. Our results show increased expression of SASP markers in AT versus blood B cells, a phenotype associated with a hyper-metabolic profile necessary to support the increased immune activation of AT-derived B cells as compared to blood-derived B cells. This hyper-metabolic profile is needed for the secretion of the pro-inflammatory mediators (cytokines, chemokines, micro-RNAs) that fuel local and systemic inflammation.  相似文献   

9.
Men with nonalcoholic fatty liver disease (NAFLD) are more exposed to nonalcoholic steatohepatitis (NASH) and liver fibrosis than women. However, the underlying molecular mechanisms of NALFD sex dimorphism are unclear. We combined gene expression, histological and lipidomic analyses to systematically compare male and female liver steatosis. We characterized hepatosteatosis in three independent mouse models of NAFLD, ob/ob and lipodystrophic fat-specific (PpargFΔ/Δ) and whole-body PPARγ-null (PpargΔ/Δ) mice. We identified a clear sex dimorphism occurring only in PpargΔ/Δ mice, with females showing macro- and microvesicular hepatosteatosis throughout their entire life, while males had fewer lipid droplets starting from 20 weeks. This sex dimorphism in hepatosteatosis was lost in gonadectomized PpargΔ/Δ mice. Lipidomics revealed hepatic accumulation of short and highly saturated TGs in females, while TGs were enriched in long and unsaturated hydrocarbon chains in males. Strikingly, sex-biased genes were particularly perturbed in both sexes, affecting lipid metabolism, drug metabolism, inflammatory and cellular stress response pathways. Most importantly, we found that the expression of key sex-biased genes was severely affected in all the NAFLD models we tested. Thus, hepatosteatosis strongly affects hepatic sex-biased gene expression. With NAFLD increasing in prevalence, this emphasizes the urgent need to specifically address the consequences of this deregulation in humans.  相似文献   

10.
We previously found that the disorder of soluble epoxide hydrolase (sEH)/cyclooxygenase-2 (COX-2)-mediated arachidonic acid (ARA) metabolism contributes to the pathogenesis of the non-alcoholic fatty liver disease (NAFLD) in mice. However, the exact mechanism has not been elucidated. Accumulating evidence points to the essential role of cellular senescence in NAFLD. Herein, we investigated whether restoring the balance of sEH/COX-2-mediated ARA metabolism attenuated NAFLD via hepatocyte senescence. A promised dual inhibitor of sEH and COX-2, PTUPB, was used in our study to restore the balance of sEH/COX-2-mediated ARA metabolism. In vivo, NAFLD was induced by a high-fat diet (HFD) using C57BL/6J mice. In vitro, mouse hepatocytes (AML12) and mouse hepatic astrocytes (JS1) were used to investigate the effects of PTUPB on palmitic acid (PA)-induced hepatocyte senescence and its mechanism. PTUPB alleviated liver injury, decreased collagen and lipid accumulation, restored glucose tolerance, and reduced hepatic triglyceride levels in HFD-induced NAFLD mice. Importantly, PTUPB significantly reduced the expression of liver senescence-related molecules p16, p53, and p21 in HFD mice. In vitro, the protein levels of γH2AX, p53, p21, COX-2, and sEH were increased in AML12 hepatocytes treated with PA, while Ki67 and PCNA were significantly decreased. PTUPB decreased the lipid content, the number of β-gal positive cells, and the expression of p53, p21, and γH2AX proteins in AML12 cells. Meanwhile, PTUPB reduced the activation of hepatic astrocytes JS1 by slowing the senescence of AML12 cells in a co-culture system. It was further observed that PTUPB enhanced the ratio of autophagy-related protein LC3II/I in AML12 cells, up-regulated the expression of Fundc1 protein, reduced p62 protein, and suppressed hepatocyte senescence. In addition, PTUPB enhanced hepatocyte autophagy by inhibiting the PI3K/AKT/mTOR pathway through Sirt1, contributing to the suppression of senescence. PTUPB inhibits the PI3K/AKT/mTOR pathway through Sirt1, improves autophagy, slows down the senescence of hepatocytes, and alleviates NAFLD.  相似文献   

11.
12.
Nonalcoholic fatty liver disease (NAFLD) is recognized as a metabolic disease characterized by hepatic steatosis. Despite the growing burden of NAFLD, approved pharmacological treatment is lacking. As an inhibitor of androgen receptor (AR), EPI-001 is being explored for the treatment of prostate cancer. This study aimed to investigate the potential of EPI-001 for treating NAFLD in free fatty acids (FFAs)-induced human hepatic cells and high-fat-high-sugar (HFHS)-feeding mice. Our results showed that EPI-001 reduced lipid accumulation in hepatic cells and ameliorated hepatic steatosis in mouse livers. Further exploration suggested that the effect of EPI-001 was associated with CYP2E1-mediated reduction of reactive oxygen species (ROS). This provides encouraging evidence for further studies on EPI-001 therapy for NAFLD.  相似文献   

13.
NAFLD is the most common chronic liver disease worldwide, occurring in both obese and lean patients. It can lead to life-threatening liver diseases and nonhepatic complications, such as cirrhosis and cardiovascular diseases, that burden public health and the health care system. Current care is weight loss through diet and exercise, which is a challenging goal to achieve. However, there are no FDA-approved pharmacotherapies for NAFLD. This review thoroughly examines the clinical trial findings from 22 drugs (Phase 2 and above) and evaluates the future direction that trials should take for further drug development. These trialed drugs can broadly be categorized into five groups—hypoglycemic, lipid-lowering, bile-pathway, anti-inflammatory, and others, which include nutraceuticals. The multitude of challenges faced in these yet-to-be-approved NAFLD drug trials provided insight into a few areas of improvement worth considering. These include drug repurposing, combinations, noninvasive outcomes, standardization, adverse event alleviation, and the need for precision medicine with more extensive consideration of NAFLD heterogenicity in drug trials. Understandably, every evolution of the drug development landscape lies with its own set of challenges. However, this paper believes in the importance of always learning from lessons of the past, with each potential improvement pushing clinical trials an additional step forward toward discovering appropriate drugs for effective NAFLD management.  相似文献   

14.
Sodium-glucose co-transporters (SGLTs) serve to reabsorb glucose in the kidney. Recently, these transporters, mainly SGLT2, have emerged as new therapeutic targets for patients with diabetes and kidney disease; by inhibiting glucose reabsorption, they promote glycosuria, weight loss, and improve glucose tolerance. They have also been linked to cardiac protection and mitigation of liver injury. However, to date, the mechanism(s) by which SGLT2 inhibition promotes systemic improvements is not fully appreciated. Using an obese TallyHo mouse model which recapitulates the human condition of diabetes and nonalcoholic fatty liver disease (NAFLD), we sought to determine how modulation of renal glucose handling impacts liver structure and function. Apart from an attenuation of hyperglycemia, Empagliflozin was found to decrease circulating triglycerides and lipid accumulation in the liver in male TallyHo mice. This correlated with lowered hepatic cholesterol esters. Using in vivo MRI analysis, we further determined that the reduction in hepatic steatosis in male TallyHo mice was associated with an increase in nuchal white fat indicative of “healthy adipose expansion”. Notably, this whitening of the adipose came at the expense of brown adipose tissue. Collectively, these data indicate that the modulation of renal glucose handling has systemic effects and may be useful as a treatment option for NAFLD and steatohepatitis.  相似文献   

15.
Modern understanding of aging is based on the accumulation of cellular damage during one’s life span due to the gradual deterioration of regenerative mechanisms in response to the continuous effect of stress, lifestyle, and environmental factors, followed by increased morbidity and mortality. Simultaneously, the number of senescent cells accumulate exponentially as organisms age. Cell culture models are valuable tools to investigate the mechanisms of aging by inducing cellular senescence in stress-induced premature senescence (SIPS) models. Here, we explain the three-step and one-step H2O2-induced senescence models of SIPS designed and reproduced on different human dermal fibroblast cell lines (CCD-1064Sk, CCD-1135Sk, and BJ-5ta). In both SIPS models, it was evident that the fibroblasts developed similar aging characteristics as cells with replicative senescence. Among the most noticeable senescent biomarkers were increased β-Gal expression, high levels of the p21 protein, altered levels of cell-cycle regulators (i.e., CDK2 and c-Jun), compromised extracellular matrix (ECM) composition, reduced cellular viability, and delayed wound healing properties. Based on the significant increase in senescence biomarkers in fibroblast cultures, reduced functional activity, and metabolic dysfunction, the one-step senescence model was chosen as a feasible and reliable method for future testing of anti-aging compounds.  相似文献   

16.
Accumulation of senescent cells in tissues during normal or accelerated aging has been shown to be detrimental and to favor the outcomes of age-related diseases such as heart failure (HF). We have previously shown that oxidative stress dependent on monoamine oxidase A (MAOA) activity in cardiomyocytes promotes mitochondrial damage, the formation of telomere-associated foci, senescence markers, and triggers systolic cardiac dysfunction in a model of transgenic mice overexpressing MAOA in cardiomyocytes (Tg MAOA). However, the impact of cardiomyocyte oxidative stress on the cardiac microenvironment in vivo is still unclear. Our results showed that systolic cardiac dysfunction in Tg MAOA mice was strongly correlated with oxidative stress induced premature senescence of cardiac stromal cells favoring the recruitment of CCR2+ monocytes and the installation of cardiac inflammation. Understanding the interplay between oxidative stress induced premature senescence and accelerated cardiac dysfunction will help to define new molecular pathways at the crossroad between cardiac dysfunction and accelerated aging, which could contribute to the increased susceptibility of the elderly to HF.  相似文献   

17.
(1) Background: Non-alcoholic fatty liver disease (NAFLD) is a growing global health problem. NAFLD progression involves a complex interplay of imbalanced inflammatory cell populations and inflammatory signals such as reactive oxygen species and cytokines. These signals can derive from the liver itself but also from adipose tissue or be mediated via changes in the gut microbiome. We analyzed the effects of a simultaneous migration blockade caused by L-selectin-deficiency and an enhancement of the anti-oxidative stress response triggered by hepatocytic Kelch-like ECH-associated protein 1 (Keap1) deletion on NAFLD progression. (2) Methods: L-selectin-deficient mice (Lsel−/−Keap1flx/flx) and littermates with selective hepatic Keap1 deletion (Lsel−/−Keap1Δhepa) were compared in a 24-week Western-style diet (WD) model. (3) Results: Lsel−/−Keap1Δhepa mice exhibited increased expression of erythroid 2-related factor 2 (Nrf2) target genes in the liver, decreased body weight, reduced epidydimal white adipose tissue with decreased immune cell frequencies, and improved glucose response when compared to their Lsel−/−Keap1flx/flx littermates. Although WD feeding caused drastic changes in fecal microbiota profiles with decreased microbial diversity, no genotype-dependent shifts were observed. (4) Conclusions: Upregulation of the anti-oxidative stress response improves metabolic changes in L-selectin-deficient mice but does not prevent NAFLD progression and shifts in the gut microbiota.  相似文献   

18.
19.
Currently, the number of people suffering from obesity is increasing worldwide. In addition, the disease is affecting younger individuals. Therefore, it is essential to search for new diagnostic methods and markers for early assessment of the risk of obesity, metabolic disorders, and other comorbidities. The discovery of the secretory function of adipose tissue and coexistence of low-grade chronic inflammation with obesity set a new direction in this disease diagnosis using the assessment of the concentration of inflammatory markers secreted by adipose tissue. The aim of this review was to determine, based on previous findings, whether saliva can be useful in the diagnosis of obesity and its early metabolic complications and whether it can be an alternative diagnostic material to serum.  相似文献   

20.
Non-alcoholic fatty liver disease (NAFLD), the most common cause of chronic liver disease, consists of fat deposited (steatosis) in the liver due to causes besides excessive alcohol use. The folding activity of heat shock protein 60 (HSP60) has been shown to protect mitochondria from proteotoxicity under various types of stress. In this study, we investigated whether HSP60 could ameliorate experimental high-fat diet (HFD)-induced obesity and hepatitis and explored the potential mechanism in mice. The results uncovered that HSP60 gain not only alleviated HFD-induced body weight gain, fat accumulation, and hepatocellular steatosis, but also glucose tolerance and insulin resistance according to intraperitoneal glucose tolerance testing and insulin tolerance testing in HSP60 transgenic (HSP60Tg) compared to wild-type (WT) mice by HFD. Furthermore, overexpression of HSP60 in the HFD group resulted in inhibited release of mitochondrial dsRNA (mt-dsRNA) compared to WT mice. In addition, overexpression of HSP60 also inhibited the activation of toll-like receptor 3 (TLR3), melanoma differentiation-associated gene 5 (MDA5), and phosphorylated-interferon regulatory factor 3 (p-IRF3), as well as inflammatory biomarkers such as mRNA of il-1β and il-6 expression in the liver in response to HFD. The in vitro study also confirmed that the addition of HSP-60 mimics in HepG2 cells led to upregulated expression level of HSP60 and restricted release of mt-dsRNA, as well as downregulated expression levels of TLR3, MDA5, and pIRF3. This study provides novel insight into a hepatoprotective effect, whereby HSP60 inhibits the release of dsRNA to repress the TLR3/MDA5/pIRF3 pathway in the context of NAFLD or hepatic inflammation. Therefore, HSP60 may serve as a possible therapeutic target for improving NAFLD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号