共查询到20条相似文献,搜索用时 12 毫秒
1.
Shiau-Ting Shiu Wei-Fang Lee Sheng-Min Chen Liu-Ting Hao Yuan-Ting Hung Pin-Chuang Lai Sheng-Wei Feng 《International journal of molecular sciences》2021,22(15)
This study evaluated the new bone formation potential of micro–macro biphasic calcium phosphate (MBCP) and Bio-Oss grafting materials with and without dental pulp-derived mesenchymal stem cells (DPSCs) and bone marrow-derived mesenchymal stem cells (BMSCs) in a rabbit calvarial bone defect model. The surface structure of the grafting materials was evaluated using a scanning electron microscope (SEM). The multipotent differentiation characteristics of the DPSCs and BMSCs were assessed. Four circular bone defects were created in the calvarium of 24 rabbits and randomly allocated to eight experimental groups: empty control, MBCP, MBCP+DPSCs, MBCP+BMSCs, Bio-Oss+DPSCs, Bio-Oss+BMSCs, and autogenous bone. A three-dimensional analysis of the new bone formation was performed using micro-computed tomography (micro-CT) and a histological study after 2, 4, and 8 weeks of healing. Homogenously porous structures were observed in both grafting materials. The BMSCs revealed higher osteogenic differentiation capacities, whereas the DPSCs exhibited higher colony-forming units. The micro-CT and histological analysis findings for the new bone formation were consistent. In general, the empty control showed the lowest bone regeneration capacity throughout the experimental period. By contrast, the percentage of new bone formation was the highest in the autogenous bone group after 2 (39.4% ± 4.7%) and 4 weeks (49.7% ± 1.5%) of healing (p < 0.05). MBCP and Bio-Oss could provide osteoconductive support and prevent the collapse of the defect space for new bone formation. In addition, more osteoblastic cells lining the surface of the newly formed bone and bone grafting materials were observed after incorporating the DPSCs and BMSCs. After 8 weeks of healing, the autogenous bone group (54.9% ± 6.1%) showed a higher percentage of new bone formation than the empty control (35.3% ± 0.5%), MBCP (38.3% ± 6.0%), MBCP+DPSC (39.8% ± 5.7%), Bio-Oss (41.3% ± 3.5%), and Bio-Oss+DPSC (42.1% ± 2.7%) groups. Nevertheless, the percentage of new bone formation did not significantly differ between the MBCP+BMSC (47.2% ± 8.3%) and Bio-Oss+BMSC (51.2% ± 9.9%) groups and the autogenous bone group. Our study results demonstrated that autogenous bone is the gold standard. Both the DPSCs and BMSCs enhanced the osteoconductive capacities of MBCP and Bio-Oss. In addition, the efficiency of the BMSCs combined with MBCP and Bio-Oss was comparable to that of the autogenous bone after 8 weeks of healing. These findings provide effective strategies for the improvement of biomaterials and MSC-based bone tissue regeneration. 相似文献
2.
Irwin Puc Tzu-Chuan Ho Yu-Wen Chien Sia-Seng Tan Yu-Cin Fong Yi-Ju Chen Sheng-Hsuan Wang Yun-Hsuan Li Chun-Hong Chen Po-Lin Chen Guey-Chuen Perng Jih-Jin Tsai 《International journal of molecular sciences》2022,23(22)
Hematopoietic stem and progenitor cells (HSPCs) mobilization is the movement of HSPCs from the bone marrow to the peripheral blood or tissue induced by stress. HSPC mobilization is a well-known response to protect the host during infection through urgent differentiation of HSPCs to immune cells. Dengue virus (DENV) infection is known to cause stress in infected humans and the mobilizing capacity of HSPCs during DENV infection in affected patients has not been fully investigated. Here, we investigated whether DENV infection can induce HSPC mobilization and if the mobilized HSPCs are permissive to DENV infection. White blood cells (WBCs) were collected from dengue patients (DENV+) and healthy donors and analyzed by flow cytometry and plaque assay. Elevated HSPCs levels were found in the WBCs of the DENV+ group when compared to the healthy group. Mobilization of HSPCs and homing markers (skin and gut) expression decreased as the patients proceeded from dengue without symptoms (DWoWS) to severe dengue (SD). Mobilizing HSPCs were not only permissive to DENV infection, but infectious DENV could be recovered after coculture. Our results highlight the need for further investigation into HSPC mobilization or alterations of hematopoiesis during viral infections such as DENV in order to develop appropriate countermeasures. 相似文献
3.
Rosana de Almeida Santos Karina Dutra Asensi Julia Helena Oliveira de Barros Rafael Campos Silva de Menezes Ingrid Rosenburg Cordeiro Jos Marques de Brito Neto Tais Hanae Kasai-Brunswick Regina Coeli dos Santos Goldenberg 《International journal of molecular sciences》2020,21(24)
Several therapies are being developed to increase blood circulation in ischemic tissues. Despite bone marrow-derived mesenchymal stromal cells (bmMSC) are still the most studied, an interesting and less invasive MSC source is the menstrual blood, which has shown great angiogenic capabilities. Therefore, the aim of this study was to evaluate the angiogenic properties of menstrual blood-derived mesenchymal stromal cells (mbMSC) in vitro and in vivo and compared to bmMSC. MSC’s intrinsic angiogenic capacity was assessed by sprouting and migration assays. mbMSC presented higher invasion and longer sprouts in 3D culture. Additionally, both MSC-spheroids showed cells expressing CD31. mbMSC and bmMSC were able to migrate after scratch wound in vitro, nonetheless, only mbMSC demonstrated ability to engraft in the chick embryo, migrating to perivascular, perineural, and chondrogenic regions. In order to study the paracrine effects, mbMSC and bmMSC conditioned mediums were capable of stimulating HUVEC’s tube-like formation and migration. Both cells expressed VEGF-A and FGF2. Meanwhile, PDGF-B was expressed exclusively in mbMSC. Our results indicated that mbMSC and bmMSC presented a promising angiogenic potential. However, mbMSC seems to have additional advantages since it can be obtained by non-invasive procedure and expresses PDGF-B, an important molecule for vascular formation and remodeling. 相似文献
4.
Matilde Tschon Elisa Boanini Maria Sartori Francesca Salamanna Silvia Panzavolta Adriana Bigi Milena Fini 《International journal of molecular sciences》2022,23(11)
Background: Bisphosphonates are widely employed drugs for the treatment of pathologies with high bone resorption, such as osteoporosis, and display a great affinity for calcium ions and apatitic substrates. Here, we aimed to investigate the potentiality of zoledronate functionalized hydroxyapatite nanocrystals (HAZOL) to promote bone regeneration by stimulating adhesion, viability, metabolic activity and osteogenic commitment of human bone marrow derived mesenchymal stromal cells (hMSCs). Methods: we adopted an advanced three-dimensional (3D) in vitro fracture healing model to study porous scaffolds: hMSCs were seeded onto the scaffolds that, after three days, were cut in halves and unseeded scaffolds were placed between the two halves. Scaffold characterization by X-ray diffraction, transmission and scanning electron microscopy analyses and cell morphology, viability, osteogenic differentiation and extracellular matrix deposition were evaluated after 3, 7 and 10 days of culture. Results: Electron microscopy showed a porous and interconnected structure and a uniform cell layer spread onto scaffolds. Scaffolds were able to support cell growth and cells progressively colonized the whole inserts in absence of cytotoxic effects. Osteogenic commitment and gene expression of hMSCs were enhanced with higher expressions of ALPL, COL1A1, BGLAP, RUNX2 and Osterix genes. Conclusion: Although some limitations affect the present study (e.g., the lack of longer experimental times, of mechanical stimulus or pathological microenvironment), the obtained results with the adopted experimental setup suggested that zoledronate functionalized scaffolds (GHAZOL) might sustain not only cell proliferation, but positively influence osteogenic differentiation and activity if employed in bone fracture healing. 相似文献
5.
6.
Alessandro Pirosa Esma Bahar Tankus Andrea Mainardi Paola Occhetta Laura Dnges Cornelia Baum Marco Rasponi Ivan Martin Andrea Barbero 《International journal of molecular sciences》2021,22(17)
The subchondral bone and its associated vasculature play an important role in the onset of osteoarthritis (OA). Integration of different aspects of the OA environment into multi-cellular and complex human, in vitro models is therefore needed to properly represent the pathology. In this study, we exploited a mesenchymal stromal cell line/endothelial cell co-culture to produce an in vitro human model of vascularized osteogenic tissue. A cocktail of inflammatory cytokines, or conditioned medium from mechanically-induced OA engineered microcartilage, was administered to this vascularized bone model to mimic the inflamed OA environment, hypothesizing that these treatments could induce the onset of specific pathological traits. Exposure to the inflammatory factors led to increased network formation by endothelial cells, reminiscent of the abnormal angiogenesis found in OA subchondral bone, demineralization of the constructs, and increased collagen production, signs of OA related bone sclerosis. Furthermore, inflammation led to augmented expression of osteogenic (alkaline phosphatase (ALP) and osteocalcin (OCN)) and angiogenic (vascular endothelial growth factor (VEGF)) genes. The treatment, with a conditioned medium from the mechanically-induced OA engineered microcartilage, also caused increased demineralization and expression of ALP, OCN, ADAMTS5, and VEGF; however, changes in network formation by endothelial cells were not observed in this second case, suggesting a possible different mechanism of action in inducing OA-like phenotypes. We propose that this vascularized bone model could represent a first step for the in vitro study of bone changes under OA mimicking conditions and possibly serve as a tool in testing anti-OA drugs. 相似文献
7.
8.
Siddharth Shanbhag Neha Rana Salwa Suliman Shaza Bushra Idris Kamal Mustafa Andreas Stavropoulos 《International journal of molecular sciences》2023,24(1)
Bone regeneration is driven by mesenchymal stromal cells (MSCs) via their interactions with immune cells, such as macrophages (MPs). Bone substitutes, e.g., bi-calcium phosphates (BCPs), are commonly used to treat bone defects. However, little research has focused on MSC responses to BCPs in the context of inflammation. The objective of this study was to investigate whether BCPs influence MSC responses and MSC–MP interactions, at the gene and protein levels, in an inflammatory microenvironment. In setup A, human bone marrow MSCs combined with two different BCP granules (BCP 60/40 or BCP 20/80) were cultured with or without cytokine stimulation (IL1β + TNFα) to mimic acute inflammation. In setup B, U937 cell-line-derived MPs were introduced via transwell cocultures to setup A. Monolayer MSCs with and without cytokine stimulation served as controls. After 72 h, the expressions of genes related to osteogenesis, healing, inflammation and remodeling were assessed in the MSCs via quantitative polymerase chain reactions. Additionally, MSC-secreted cytokines related to healing, inflammation and chemotaxis were assessed via multiplex immunoassays. Overall, the results indicate that, under both inflammatory and non-inflammatory conditions, the BCP granules significantly regulated the MSC gene expressions towards a pro-healing genotype but had relatively little effect on the MSC secretory profiles. In the presence of the MPs (coculture), the BCPs positively regulated both the gene expression and cytokine secretion of the MSCs. Overall, similar trends in MSC responses were observed with BCP 60/40 and BCP 20/80. In summary, within the limits of in vitro models, these findings suggest that the presence of BCP granules at a surgical site may not necessarily have a detrimental effect on MSC-mediated wound healing, even in the event of inflammation. 相似文献
9.
Regenerative medicine is concerned with the investigation of therapeutic agents that can be used to promote the process of regeneration after injury or in different diseases. Mesenchymal stem/stromal cells (MSCs) and their secretome—including extracellular vesicles (EVs) are of great interest, due to their role in tissue regeneration, immunomodulatory capacity and low immunogenicity. So far, clinical studies are not very conclusive as they show conflicting efficacies regarding the use of MSCs. An additional process possibly involved in regeneration might be cell fusion. This process occurs in both a physiological and a pathophysiological context and can be affected by immune response due to inflammation. In this review the role of MSCs and cell fusion in tissue regeneration is discussed. 相似文献
10.
Chen-Yuan Kao Jinlin Jiang Will Thompson Eleftherios T. Papoutsakis 《International journal of molecular sciences》2022,23(10)
Megakaryocytes release submicron size microparticles (MkMPs) in circulation. We have shown that MkMPs target CD34+ hematopoietic stem/progenitor cells (HSPCs) to induce megakaryocytic differentiation, and that small RNAs in MkMPs play an important role in the development of this phenotype. Here, using single-molecule real-time (SMRT) RNA sequencing (RNAseq), we identify the synergetic effect of two microRNAs (miRs), miR-486-5p and miR-22-3p (highly enriched in MkMPs), in driving the Mk differentiation of HSPCs in the absence of thrombopoietin (TPO). Separately, our data suggest that the MkMP-induced Mk differentiation of HSPCs is enabled through JNK and PI3K/Akt/mTOR signaling. The interaction between the two signaling pathways is likely mediated by a direct target of miR-486-5p and a negative regulator of PI3K/Akt signaling, the phosphatase and tensin homologue (PTEN) protein. Our data provide a possible mechanistic explanation of the biological effect of MkMPs in inducing megakaryocytic differentiation of HSPCs, a phenotype of potential physiological significance in stress megakaryopoiesis. 相似文献
11.
Tamara Kukolj Jasmina Lazarevi Ana Borojevi Uro Ralevi Dragana Vuji Aleksandra Jaukovi Nenad Lazarevi Diana Bugarski 《International journal of molecular sciences》2022,23(9)
The heterogeneity of stem cells represents the main challenge in regenerative medicine development. This issue is particularly pronounced when it comes to the use of primary mesenchymal stem/stromal cells (MSCs) due to a lack of identification markers. Considering the need for additional approaches in MSCs characterization, we applied Raman spectroscopy to investigate inter-individual differences between bone marrow MSCs (BM-MSCs). Based on standard biological tests, BM-MSCs of analyzed donors fulfill all conditions for their characterization, while no donor-related specifics were observed in terms of BM-MSCs morphology, phenotype, multilineage differentiation potential, colony-forming capacity, expression of pluripotency-associated markers or proliferative capacity. However, examination of BM-MSCs at a single-cell level by Raman spectroscopy revealed that despite similar biochemical background, fine differences in the Raman spectra of BM-MSCs of each donor can be detected. After extensive principal component analysis (PCA) of Raman spectra, our study revealed the possibility of this method to diversify BM-MSCs populations, whereby the grouping of cell populations was most prominent when cell populations were analyzed in pairs. These results indicate that Raman spectroscopy, as a label-free assay, could have a huge potential in understanding stem cell heterogeneity and sorting cell populations with a similar biochemical background that can be significant for the development of personalized therapy approaches. 相似文献
12.
Yuan Zhou Yongzheng He Richa Sharma Wen Xing Selina A. Estwick Xiaohua Wu Steven D. Rhodes Mingjiang Xu Feng-Chun Yang 《International journal of molecular sciences》2015,16(6):12345-12359
Neurofibromatosis type 1 (NF1) is an autosomal dominant disease caused by mutations in the NF1 tumor suppressor gene, which affect approximately 1 out of 3000 individuals. Patients with NF1 suffer from a range of malignant and nonmalignant manifestations such as plexiform neurofibromas and skeletal abnormalities. We previously demonstrated that Nf1 haploinsufficiency in mesenchymal stem/progenitor cells (MSPCs) results in impaired osteoblastic differentiation, which may be associated with the skeletal manifestations in NF1 patients. Here we sought to further ascertain the role of Nf1 in modulating the migration and adhesion of MSPCs of the Nf1 haploinsufficient (Nf1+/−) mice. Nf1+/− MSPCs demonstrated increased nuclear-cytoplasmic ratio, increased migration, and increased actin polymerization as compared to wild-type (WT) MSPCs. Additionally, Nf1+/− MSPCs were noted to have significantly enhanced cell adhesion to fibronectin with selective affinity for CH271 with an overexpression of its complimentary receptor, CD49e. Nf1+/− MSPCs also showed hyperactivation of phosphoinositide 3-kinase (PI3-K) and mitogen activated protein kinase (MAPK) signaling pathways when compared to WT MSPCs, which were both significantly reduced in the presence of their pharmacologic inhibitors, and PD0325901, respectively. Collectively, our study suggests that both PI3-K and MAPK signaling pathways play a significant role in enhanced migration and adhesion of Nf1 haploinsufficient MSPCs. LY294002相似文献
13.
Tee Jong Huat Amir Ali Khan Jafri Malin Abdullah Fauziah Mohamad Idris Hasnan Jaafar 《International journal of molecular sciences》2015,16(5):9693-9718
Insulin-like growth factor 1 (IGF-1) enhances cellular proliferation and reduces apoptosis during the early differentiation of bone marrow derived mesenchymal stem cells (BMSCs) into neural progenitor-like cells (NPCs) in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). BMSCs were differentiated in three groups of growth factors: (A) EGF + bFGF, (B) EGF + bFGF + IGF-1, and (C) without growth factor. To unravel the molecular mechanisms of the NPCs derivation, microarray analysis using GeneChip® miRNA arrays was performed. The profiles were compared among the groups. Annotated microRNA fingerprints () delineated 46 microRNAs temporally up-regulated or down-regulated compared to group C. The expressions of selected microRNAs were validated by real-time PCR. Among the 46 microRNAs, 30 were consistently expressed for minimum of two consecutive time intervals. In Group B, only miR-496 was up-regulated and 12 microRNAs, including the let-7 family, miR-1224, miR-125a-3p, miR-214, miR-22, miR-320, miR-708, and miR-93, were down-regulated. Bioinformatics analysis reveals that some of these microRNAs (miR-22, miR-214, miR-125a-3p, miR-320 and let-7 family) are associated with reduction of apoptosis. Here, we summarize the roles of key microRNAs associated with IGF-1 in the differentiation of BMSCs into NPCs. These findings may provide clues to further our understanding of the mechanisms and roles of microRNAs as key regulators of BMSC-derived NPC maintenance. GSE60060相似文献
14.
15.
Konstantin V. Dergilev Evgeny K. Shevchenko Zoya I. Tsokolaeva Irina B. Beloglazova Ekaterina S. Zubkova Maria A. Boldyreva Mikhail Yu. Menshikov Elizaveta I. Ratner Dmitry Penkov Yelena V. Parfyonova 《International journal of molecular sciences》2020,21(24)
Cell therapy of the post-infarcted myocardium is still far from clinical use. Poor survival of transplanted cells, insufficient regeneration, and replacement of the damaged tissue limit the potential of currently available cell-based techniques. In this study, we generated a multilayered construct from adipose-derived mesenchymal stromal cells (MSCs) modified to secrete stem cell factor, SCF. In a rat model of myocardium infarction, we show that transplantation of SCF producing cell sheet induced activation of the epicardium and promoted the accumulation of c-kit positive cells in ischemic muscle. Morphometry showed the reduction of infarct size (16%) and a left ventricle expansion index (0.12) in the treatment group compared to controls (24–28%; 0.17–0.32). The ratio of viable myocardium was more than 1.5-fold higher, reaching 49% compared to the control (28%) or unmodified cell sheet group (30%). Finally, by day 30 after myocardium infarction, SCF-producing cell sheet transplantation increased left ventricle ejection fraction from 37% in the control sham-operated group to 53%. Our results suggest that, combining the genetic modification of MSCs and their assembly into a multilayered construct, we can provide prolonged pleiotropic effects to the damaged heart, induce endogenous regenerative processes, and improve cardiac function. 相似文献
16.
Laura Grech Jean-Paul Ebejer Oriana Mazzitelli Kevin Schembri Joseph Borg Elisa Seria 《International journal of molecular sciences》2022,23(1)
Circulating bone marrow mesenchymal progenitors (BMMPs) are known to be potent antigen-presenting cells that migrate to damaged tissue to secrete cytokines and growth factors. An altered or dysregulated inflammatory cascade leads to a poor healing outcome. A skin model developed in our previous study was used to observe the immuno-modulatory properties of circulating BMMP cells in inflammatory chronic wounds in a scenario of low skin perfusion. BMMPs were analysed exclusively and in conjunction with recombinant tumour necrosis factor alpha (TNFα) and recombinant hepatocyte growth factor (HGF) supplementation. We analysed the expression levels of interleukin-8 (IL-8) and ecto-5′-nucleotidase (CD73), together with protein levels for IL-8, stem cell factor (SCF), and fibroblast growth factor 1 (FGF-1). The successfully isolated BMMPs were positive for both hemopoietic and mesenchymal markers and showed the ability to differentiate into adipocytes, chondrocytes, and osteocytes. Significant differences were found in IL-8 and CD73 expressions and IL-8 and SCF concentrations, for all conditions studied over the three time points taken into consideration. Our data suggests that BMMPs may modulate the inflammatory response by regulating IL-8 and CD73 and influencing IL-8 and SCF protein secretions. In conclusion, we suggest that BMMPs play a role in wound repair and that their induced application might be suitable for scenarios with a low skin perfusion. 相似文献
17.
Marlene Louise Quaade Pratibha Dhumale Simon Gabriel Comerma Steffensen Hans Christian Beck Eva Bang Harvald Charlotte Harken Jensen Lars Lund Ditte Caroline Andersen Sren Paludan Sheikh 《International journal of molecular sciences》2022,23(3)
Erectile dysfunction is a common complication associated with type 2 diabetes mellitus (T2DM) and after prostatectomy in relation to cancer. The regenerative effect of cultured adipose-derived stem cells (ASCs) for ED therapy has been documented in multiple preclinical trials as well as in recent Pase 1 trials in humans. However, some studies indicate that diabetes negatively affects the mesenchymal stem cell pool, implying that ASCs from T2DM patients could have impaired regenerative capacity. Here, we directly compared ASCs from age-matched diabetic Goto–Kakizaki (ASCGK) and non-diabetic wild type rats (ASCWT) with regard to their phenotypes, proteomes and ability to rescue ED in normal rats. Despite ASCGK exhibiting a slightly lower proliferation rate, ASCGK and ASCWT proteomes were more or less identical, and after injections to corpus cavernosum they were equally efficient in restoring erectile function in a rat ED model entailing bilateral nerve crush injury. Moreover, molecular analysis of the corpus cavernosum tissue revealed that both ASCGK and ASCWT treated rats had increased induction of genes involved in recovering endothelial function. Thus, our finding argues that T2DM does not appear to be a limiting factor for autologous adipose stem cell therapy when correcting for ED. 相似文献
18.
19.
Kiyofumi Takabatake Masakazu Matsubara Eiki Yamachika Yuki Fujita Yuki Arimura Kazuki Nakatsuji Keisuke Nakano Histoshi Nagatsuka Seiji Iida 《International journal of molecular sciences》2021,22(22)
Background: We investigated and compared the osteogenic potential and bone regeneration capacities of dedifferentiated fat cells (DFAT cells) and adipose-derived stem cells (ASCs). Method: We isolated DFAT cells and ASCs from GFP mice. DFAT cells were established by a new culture method using a mesh culture instead of a ceiling culture. The isolated DFAT cells and ASCs were incubated in osteogenic medium, then alizarin red staining, alkaline phosphatase (ALP) assays, and RT-PCR (for RUNX2, osteopontin, DLX5, osterix, and osteocalcin) were performed to evaluate the osteoblastic differentiation ability of both cell types in vitro. In vivo, the DFAT cells and ASCs were incubated in osteogenic medium for four weeks and seeded on collagen composite scaffolds, then implanted subcutaneously into the backs of mice. We then performed hematoxylin and eosin staining and immunostaining for GFP and osteocalcin. Results: The alizarin red-stained areas in DFAT cells showed weak calcification ability at two weeks, but high calcification ability at three weeks, similar to ASCs. The ALP levels of ASCs increased earlier than in DFAT cells and showed a significant difference (p < 0.05) at 6 and 9 days. The ALP levels of DFATs were higher than those of ASCs after 12 days. The expression levels of osteoblast marker genes (osterix and osteocalcin) of DFAT cells and ASCs were higher after osteogenic differentiation culture. Conclusion: DFAT cells are easily isolated from a small amount of adipose tissue and are readily expanded with high purity; thus, DFAT cells are applicable to many tissue-engineering strategies and cell-based therapies. 相似文献
20.
神经干细胞(neural stem cells,NSCs)移植治疗神经损伤被认为是具有潜在应用价值的手段,但其来源困难;骨髓间充质干细胞(bone marrow mesenchymal stem cells,BMSCs)以其所具有的诸多优点,为神经损伤的治疗提供了一个新的思路。而BMSCs是否是通过作用于内源性的NSCs来促进神经修复,仍存在着争议。今采用海藻酸钙胶珠将NSCs包囊培养至一定大小的神经球后,再与BMSCs进行共培养,考察BMSCs对生长在海藻酸钙胶珠内的NSCs增殖与分化的作用,探讨BMSCs移植治疗神经疾病与损伤的作用机理。共培养过程中观察神经球结构的变化;共培养结束后计算NSCs的增殖倍数,对增殖条件下共培养的NSCs表型和多向分化潜能进行免疫荧光染色鉴定;对分化条件下共培养的NSCs向不同神经细胞分化的能力进行流式细胞仪检测。结果表明,BMSCs可使生长于支架内的NSCs迁出细胞球,对NSCs的增殖没有明显影响;但能够明显影响NSCs的分化,使其向少突胶质细胞分化的能力增加3倍,向星形胶质细胞分化的能力减弱1倍,而向神经元细胞分化的能力没有明显变化。BMSCs有可能是通过分泌某些因子增加了NSCs迁移及向少突胶质细胞分化的能力,从而促进神经损伤的修复。 相似文献