共查询到20条相似文献,搜索用时 10 毫秒
1.
In recent years, a large number of heuristics have been proposed for the minimization of the total or mean flowtime/completion time of the well-known permutation flowshop scheduling problem. Although some literature reviews and comparisons have been made, they do not include the latest available heuristics and results are hard to compare as no common benchmarks and computing platforms have been employed. Furthermore, existing partial comparisons lack the application of powerful statistical tools. The result is that it is not clear which heuristics, especially among the recent ones, are the best. This paper presents a comprehensive review and computational evaluation as well as a statistical assessment of 22 existing heuristics. From the knowledge obtained after such a detailed comparison, five new heuristics are presented. Careful designs of experiments and analyses of variance (ANOVA) techniques are applied to guarantee sound conclusions. The comparison results identify the best existing methods and show that the five newly presented heuristics are competitive or better than the best performing ones in the literature for the permutation flowshop problem with the total completion time criterion. 相似文献
2.
Since Johnson׳s seminal paper in 1954, scheduling jobs in a permutation flowshop has been receiving the attention of hundreds of practitioners and researchers, being one of the most studied topics in the Operations Research literature. Among the different objectives that can be considered, minimising the total tardiness (i.e. the sum of the surplus of the completion time of each job over its due date) is regarded as a key objective for manufacturing companies, as it entails the fulfilment of the due dates committed to customers. Since this problem is known to be NP-hard, most research has focused on proposing approximate procedures to solve it in reasonable computation times. Particularly, several constructive heuristics have been proposed, with NEHedd being the most efficient one, serving also to provide an initial solution for more elaborate approximate procedures. In this paper, we first analyse in detail the decision problem depending on the generation of the due dates of the jobs, and discuss the similarities with different related decision problems. In addition, for the most characteristic tardiness scenario, the analysis shows that a huge number of ties appear during the construction of the solutions done by the NEHedd heuristic, and that wisely breaking the ties greatly influences the quality of the final solution. Since no tie-breaking mechanism has been designed for this heuristic up to now, we propose several mechanisms that are exhaustively tested. The results show that some of them outperform the original NEHedd by about 25% while keeping the same computational requirements. 相似文献
3.
The problem of scheduling in flowshops with the objective of minimizing total flowtime is studied. For solving the problem two ant-colony algorithms are proposed and analyzed. The first algorithm refers to some extent to ideas by Stuetzle [Stuetzle, T. (1998). An ant approach for the flow shop problem. In: Proceedings of the sixth European Congress on intelligent techniques and soft computing (EUFIT '98) (Vol. 3) (pp. 1560–1564). Aachen: Verlag Mainz] and Merkle and Middendorf [Merkle, D., & Middendorf, M. (2000). An ant algorithm with a new pheromone evaluation rule for total tardiness problems. In: Proceedings of the EvoWorkshops 2000, lecture notes in computer science 1803 (pp. 287–296). Berlin: Springer]. The second algorithm is newly developed. The proposed ant-colony algorithms have been applied to 90 benchmark problems taken from Taillard [Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational Research, 64, 278–285]. A comparison of the solutions yielded by the ant-colony algorithms with the best heuristic solutions known for the benchmark problems up to now, as published in extensive studies by Liu and Reeves [Liu, J., & Reeves, C.R. (2001). Constructive and composite heuristic solutions to the P//ΣCi scheduling problem. European Journal of Operational Research, 132, 439–452, and Rajendran and Ziegler [Rajendran, C., & Ziegler, H. (2004). Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs. European Journal of Operational Research, 155, 426–438], shows that the presented ant-colony algorithms are better, on an average, than the heuristics analyzed by Liu and Reeves and Rajendran and Ziegler. 相似文献
4.
The most efficient approximate procedures so far for the flowshop scheduling problem with makespan objective – i.e. the NEH heuristic and the iterated greedy algorithm – are based on constructing a sequence by iteratively inserting, one by one, the non-scheduled jobs into all positions of an existing subsequence, and then, among the so obtained subsequences, selecting the one yielding the lowest (partial) makespan. This procedure usually causes a high number of ties (different subsequences with the same best partial makespan) that must be broken via a tie-breaking mechanism. The particular tie-breaking mechanism employed is known to have a great influence in the performance of the NEH, therefore different procedures have been proposed in the literature. However, to the best of our knowledge, no tie-breaking mechanism has been proposed for the iterated greedy. In our paper, we present a new tie-breaking mechanism based on an estimation of the idle times of the different subsequences in order to pick the one with the lowest value of the estimation. The computational experiments carried out show that this mechanism outperforms the existing ones both for the NEH and the iterated greedy for different CPU times. Furthermore, embedding the proposed tie-breaking mechanism into the iterated greedy provides the most efficient heuristic for the problem so far. 相似文献
5.
In this paper, we address the problem of scheduling a set of jobs in a flowshop with makespan objective. In contrast to the usual assumption of machine availability presented in most research, we consider that machines may not be available at the beginning of the planning period, due to processing of previously scheduled jobs. We first formulate the problem, analyse the structure of solutions depending on a number of factors (such as machines, jobs, structure of the processing times, availability vectors, etc.), and compare it with its classical counterpart. Results indicate that the problem under consideration presents a different structure of solutions, and that it is easier than the classical permutation flowshop problem. In view of these results, we propose and test a number of fast heuristics for the problem. 相似文献
6.
In this paper we address the problem of scheduling jobs in a permutation flowshop with a just-in-time objective, i.e. the minimisation of the sum of total tardiness and total earliness. Since the problem is NP-hard, there are several approximate procedures available for the problem, although their performance largely depends on the due dates of the specific instance to be solved. After an in-depth analysis of the problem, different cases or sub-problems are identified and, by incorporating this knowledge, four heuristics are proposed: a fast constructive heuristic, and three different local search procedures that use the proposed constructive heuristic as initial solution.The proposed Prod. Type: FLPheuristics have been compared on an extensive set of instances with the best-so-far heuristic for the problem, as well as with adaptations of efficient heuristics for similar scheduling problems. The computational results show the excellent performance of the proposed algorithms. Finally, the positive impact of the efficient heuristics is evaluated by including them as seed sequences for one of the best metaheuristic for the problem. 相似文献
7.
《Computers & Operations Research》2005,32(5):1237-1254
In this paper, we address the problem of sequencing jobs in a permutation flow shop with the objective of minimising the sum of completion times or flowtime. This objective is considered to be relevant and meaningful for today's dynamic production environment, and therefore it has attracted the attention of researchers during the last years. As a result, a number of different types of heuristics have recently been developed, each one claiming to be the best for the problem. However, some of these heuristics have been independently developed and only partial comparisons among them exist. Consequently, there are no conclusive results on their relative performance. Besides, some of these types of heuristics are of a different nature and could be combined in order to obtain composite heuristics. In this paper, we first classify and conduct an extensive comparison among the existing heuristics. Secondly, based on the results of the experiments, we suggest two new composite heuristics for the problem. The subsequent computational experience shows these two heuristics to be efficient for the problem under consideration. 相似文献
8.
In this study, a bi-objective multi-start simulated-annealing algorithm (BMSA) is presented for permutation flowshop scheduling problems with the objectives of minimizing the makespan and total flowtime of jobs. To evaluate the performance of the BMSA, computational experiments were conducted on the well-known benchmark problem set provided by Taillard. The non-dominated sets obtained from each of the existing benchmark algorithms and the BMSA were compared, and then combined to form a net non-dominated front. The computational results show that more than 64% of the solutions in the net non-dominated front are contributed by the proposed BMSA. It is believed that these solutions can serve as new benchmarks for future research. 相似文献
9.
In this work, a review and comprehensive evaluation of heuristics and metaheuristics for the m-machine flowshop scheduling problem with the objective of minimising total tardiness is presented. Published reviews about this objective usually deal with a single machine or parallel machines and no recent methods are compared. Moreover, the existing reviews do not use the same benchmark of instances and the results are difficult to reproduce and generalise. We have implemented a total of 40 different heuristics and metaheuristics and we have analysed their performance under the same benchmark of instances in order to make a global and fair comparison. In this comparison, we study from the classical priority rules to the most recent tabu search, simulated annealing and genetic algorithms. In the evaluations we use the experimental design approach and careful statistical analyses to validate the effectiveness of the different methods tested. The results allow us to clearly identify the state-of-the-art methods. 相似文献
10.
In this work we propose an estimation of distribution algorithm (EDA) as a new tool aiming at minimizing the total flowtime in permutation flowshop scheduling problems. A variable neighbourhood search is added to the algorithm as an improvement procedure after creating a new offspring. The experiments show that our approach outperforms all existing techniques employed for the problem and can provide new upper bounds. 相似文献
11.
The Permutation Flowshop Scheduling Problem with Makespan objective (PFSP-M) is known to be NP-hard for more than two machines, and literally hundreds of works in the last decades have proposed exact and approximate algorithms to solve it. These works—of computational/experimental nature—show that the PFSP-M is also empirically hard, in the sense that optimal or quasi-optimal sequences statistically represent a very small fraction of the space of feasible solutions, and that there are big differences among the corresponding makespan values. In the vast majority of these works, it has been assumed that (a) processing times are not job- and/or machine-correlated, and (b) all machines are initially available. However, some works have found that the problem turns to be almost trivial (i.e. almost every sequence yields an optimal or quasi-optimal solution) if one of these assumptions is dropped. To the best of our knowledge, no theoretical or experimental explanation has been proposed by this rather peculiar fact.Our hypothesis is that, under certain conditions of machine availability, or correlated processing times, the performance of a given sequence in a flowshop is largely determined by only one stage, thus effectively transforming the flowshop layout into a single machine. Since the single machine scheduling problem with makespan objective is a trivial problem where all feasible sequences are optimal, it would follow that, under these conditions, the equivalent PFSP-M is almost trivial. To address this working hypothesis from a general perspective, we investigate some conditions that allow reducing a permutation flowshop scheduling problem to a single machine scheduling problem, focusing on the two most common objectives in the literature, namely makespan and flowtime. Our work is a combination of theoretical and computational analysis, therefore several properties are derived to prove the conditions for an exact (theoretical) equivalence, together with an extensive computational evaluation to establish an empirical equivalence. 相似文献
12.
In this paper, we addressed the problem of scheduling jobs in a no-wait flow shop with sequence-dependent setup times with the objective of minimizing the total flow time. As this problem is well-known for being NP-hard, we present a new constructive heuristic, named QUARTS, in order to obtain good approximate solutions in a short CPU time. QUARTS breaks the problem in quartets in order to minimize the total flow time. The method was tested with other literature methods: BAH and BIH by Bianco et al. (1999) [6], TRIPS, by Brown et al. (2004) [7] and the metaheuristic Iterated Greedy with Local Search proposed by Ruiz and Stützle (2007) [25]. The computational results showed that IGLS obtained the best results and QUARTS presented the best performance regarding other constructive heuristics. 相似文献
13.
This paper addresses a novel distributed assembly permutation flowshop scheduling problem that has important applications in modern supply chains and manufacturing systems. The problem considers a number of identical factories, each one consisting of a flowshop for part-processing plus an assembly line for product-processing. The objective is to minimize the makespan. To suit the needs of different CPU time and solution quality, we present a mixed integer linear model, three constructive heuristics, two variable neighborhood search methods, and an iterated greedy algorithm. Important problem-specific knowledge is obtained to enhance the effectiveness of the algorithms. Accelerations for evaluating solutions are proposed to save computational efforts. The parameters and operators of the algorithms are calibrated and analyzed using a design of experiments. To prove the algorithms, we present a total of 16 adaptations of other well-known and recent heuristics, variable neighborhood search algorithms, and meta-heuristics for the problem and carry out a comprehensive set of computational and statistical experiments with a total of 810 instances. The results show that the proposed algorithms are very effective and efficient to solve the problem under consideration as they outperform the existing methods by a significant margin. 相似文献
14.
This paper deals with the problem of preemptive scheduling in a two-stage flowshop with parallel unrelated machines at the first stage and a single machine at the second stage. At the first stage, jobs use some additional resources which are available in limited quantities at any time. The resource requirements are of 0–1 type. The objective is the minimization of makespan. The problem is NP-hard. Heuristic algorithms are proposed which solve to optimality the resource constrained scheduling problem at the first stage of the flowshop, and at the same time, minimize the makespan in the flowshop by selecting appropriate jobs for simultaneous processing. Several rules of job selection are considered. The performance of the proposed heuristic algorithms is analyzed by comparing solutions with the lower bound on the optimal makespan. The extensive computational experiment shows that the proposed heuristic algorithms are able to produce near-optimal solutions in short computational time. 相似文献
15.
Rajesh Swaminathan Michele E. Pfund John W. Fowler Scott J. Mason Ahmet Keha 《Computers & Operations Research》2007
This paper is motivated by the problem of meeting due dates in a flowshop production environment with jobs with different weights and uncertain processing times. Enforcement of a permutation schedule to varying degrees for dynamic flowshops is investigated with the goal of minimizing total weighted tardiness (TWT). The approaches studied are categorized as follows: (1) pure permutation scheduling (2) shift-based scheduling (3) pure dispatching (which leads to non-permutation sequences). A simulation-based experimental study was carried out to study the performance of the above methods with respect to minimizing TWT when new jobs arrive to the flowshop at every shift change. Results indicate significant gains in performance are possible when the permutation requirement is relaxed and shift-based scheduling is allowed. Shift-based scheduling yields competitive results with respect to the pure dispatching approach, even though dispatching has the advantage of a full relaxation of the permutation requirement. 相似文献
16.
This paper focuses on the blocking flow shop scheduling problem with the objective of total flowtime minimisation. This problem assumes that there are no buffers between machines and, due to its application to many manufacturing sectors, it is receiving a growing attention by researchers during the last years. Since the problem is NP-hard, a large number of heuristics have been proposed to provide good solutions with reasonable computational times. In this paper, we conduct a comprehensive evaluation of the available heuristics for the problem and for related problems, resulting in the implementation and testing of a total of 35 heuristics. Furthermore, we propose an efficient constructive heuristic which successfully combines a pool of partial sequences in parallel, using a beam-search-based approach. The computational experiments show the excellent performance of the proposed heuristic as compared to the best-so-far algorithms for the problem, both in terms of quality of the solutions and of computational requirements. In fact, despite being a relative fast constructive heuristic, new best upper bounds have been found for more than 27% of Taillard’s instances. 相似文献
17.
Ahmed El-Bouri 《Computers & Operations Research》2012,39(7):1305-1314
Cooperative Dispatching is a real-time scheduling methodology, which consults downstream machines before making a job dispatching decision on any given machine. This paper proposes such an approach for minimizing the mean tardiness in a dynamic flowshop where new jobs arrive continuously, at random points in time, throughout the production cycle. Cooperative Dispatching is based on the idea that individual machines act self-interestedly, with the objective of optimizing their local performance criteria. A consulted machine attempts to influence upstream dispatching decisions in a manner that promotes its ability to minimize its total local tardiness. A machine's influence in the dispatching decision depends on current congestion and due-date tightness levels in the shop. A multiple regression model is proposed to help determine the weight a consulted machine's preferences will carry in the dispatching decision. Conflicting demands from the different machines are resolved by a minimum regret decision procedure, which aims to minimize the aggregate deviation from the consulted machines' preferences. The winning candidate that ultimately emerges from this procedure is the job that is dispatched. A comparative analysis to evaluate the performance of cooperative dispatching, compared to six other dispatching rules that are commonly favoured for tardiness-based criteria, is performed by means of simulation, using randomly generated test problems. Computational results indicate that Cooperative Dispatching outperforms the other dispatching rules, across a broad range of flowshop congestion and due-date tightness levels. 相似文献
18.
This paper focuses on the problem of scheduling jobs in a permutation flowshop with the objective of makespan minimisation subject to a maximum allowed tardiness for the jobs, a problem that combines two desirable manufacturing objectives related to machine utilisation and to customer satisfaction. Although several approximate algorithms have been proposed for this NP-hard problem, none of them can use the excellent speed-up method by Taillard (1990) [22] for makespan minimisation due to the special structure of the problem under consideration. In this paper, several properties of the problem are defined in order to be able to partly apply Taillard׳s acceleration. This mechanism, together with a novel feasible tabu local search method, allows us to further exploit the structure of solutions of the problem, and are incorporated in two proposed algorithms: a bounded-insertion-based constructive heuristic and an advanced non-population-based algorithm. These algorithms are compared with state-of-the-art algorithms under the same computer conditions. The results show that both algorithms improve existing ones and therefore, constitute the new state-of-art approximate solution procedures for the problem. 相似文献
19.
For over 20 years the NEH heuristic of Nawaz, Enscore, and Ham [A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, The International Journal of Management Science 1983;11:91–5] has been commonly regarded as the best heuristic for solving the NP-hard problem of minimizing the makespan in permutation flow shops. The strength of NEH lies mainly in its priority order according to which jobs are selected to be scheduled during the insertion phase. Framinan et al. [Different initial sequences for the heuristic of Nawaz, Enscore and Ham to minimize makespan, idle time or flowtime in the static permutation flowshop problem. International Journal of Production Research 2003;41:121–48] presented the results of an extensive study to conclude that the NEH priority order is superior to 136 different orders examined. Based upon the concept of Johnson's algorithm, we propose a new priority order combined with a simple tie-breaking method that leads to a heuristic that outperforms NEH for all problem sizes. 相似文献
20.
This paper develops a set of new simple constructive heuristic algorithms to minimize total flow-time for an -jobs×-machines permutation flowshop scheduling problem. We first propose a new iterative algorithm based on the best existing simple heuristic algorithm, and then integrate new indicator variables for weighting jobs into this algorithm. We also propose new decision criteria to select the best partial sequence in each iteration of our algorithm. A comprehensive numerical experiment reveals that our modifications and extensions improve the effectiveness of the best existing simple heuristic without affecting its computational efficiency. 相似文献