首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transthyretin (TTR) amyloidogenesis involves the formation, aggregation, and deposition of amyloid fibrils from tetrameric TTR in different organs and tissues. While the result of amyloidoses is the accumulation of amyloid fibrils resulting in end-organ damage, the nature, and sequence of the molecular causes leading to amyloidosis may differ between the different variants. In addition, fibril accumulation and toxicity vary between different mutations. Structural changes in amyloidogenic TTR have been difficult to identify through X-ray crystallography; but nuclear magnetic resonance spectroscopy has revealed different chemical shifts in the backbone structure of mutated and wild-type TTR, resulting in diverse responses to the cellular conditions or proteolytic stress. Toxic mechanisms of TTR amyloidosis have different effects on different tissues. Therapeutic approaches have evolved from orthotopic liver transplants to novel disease-modifying therapies that stabilize TTR tetramers and gene-silencing agents like small interfering RNA and antisense oligonucleotide therapies. The underlying molecular mechanisms of the different TTR variants could be responsible for the tropisms to specific organs, the age at onset, treatment responses, or disparities in the prognosis.  相似文献   

2.
Transthyretin (TTR), previously named prealbumin is a plasma protein secreted mainly by the liver and choroid plexus (CP) that is a carrier for thyroid hormones (THs) and retinol (vitamin A). The structure of TTR, with four monomers rich in β-chains in a globular tetrameric protein, accounts for the predisposition of the protein to aggregate in fibrils, leading to a rare and severe disease, namely transthyretin amyloidosis (ATTR). Much effort has been made and still is required to find new therapeutic compounds that can stabilize TTR (“kinetic stabilization”) and prevent the amyloid genetic process. Moreover, TTR is an interesting therapeutic target for neurodegenerative diseases due to its recognized neuroprotective properties in the cognitive impairment context and interestingly in Alzheimer’s disease (AD). Much evidence has been collected regarding the neuroprotective effects in AD, including through in vitro and in vivo studies as well as a wide range of clinical series. Despite this supported hypothesis of neuroprotection for TTR, the mechanisms are still not completely clear. The aim of this review is to highlight the most relevant findings on the neuroprotective role of TTR, and to summarize the recent progress on the development of TTR tetramer stabilizers.  相似文献   

3.
Amyloidoses are a group of diseases associated with deposits of amyloid fibrils in different tissues. So far, 36 different types of amyloidosis are known, each due to the misfolding and accumulation of a specific protein. Amyloid deposits can be found in several organs, including the heart, brain, kidneys, and spleen, and can affect single or multiple organs. Generally, amyloid-forming proteins become prone to aggregate due to genetic mutations, acquired environmental factors, excessive concentration, or post-translational modifications. Interestingly, amyloid aggregates are often composed of proteolytic fragments, derived from the degradation of precursor proteins by yet unidentified proteases, which display higher amyloidogenic tendency compared to precursor proteins, thus representing an important mechanism in the onset of amyloid-based diseases. In the present review, we summarize the current knowledge on the proteolytic susceptibility of three of the main human amyloidogenic proteins, i.e., transthyretin, β-amyloid precursor protein, and α-synuclein, in the onset of amyloidosis. We also highlight the role that proteolytic enzymes can play in the crosstalk between intestinal inflammation and amyloid-based diseases.  相似文献   

4.
Transthyretin (TTR) is an essential transporter of a thyroid hormone and a holo-retinol binding protein, found abundantly in human plasma and cerebrospinal fluid. In addition, this protein is infamous for its amyloidogenic propensity, causing various amyloidoses in humans, such as senile systemic amyloidosis, familial amyloid polyneuropathy, and familial amyloid cardiomyopathy. It has been known for over two decades that decreased stability of the native tetrameric conformation of TTR is the main cause of these diseases. Yet, mechanistic details on the amyloidogenic transformation of TTR were not clear until recent multidisciplinary investigations on various structural states of TTR. In this review, we discuss recent advancements in the structural understanding of TTR misfolding and amyloidosis processes. Special emphasis has been laid on the observations of novel structural features in various amyloidogenic species of TTR. In addition, proteolysis-induced fragmentation of TTR, a recently proposed mechanism facilitating TTR amyloidosis, has been discussed in light of its structural consequences and relevance to acknowledge the amyloidogenicity of TTR.  相似文献   

5.
Transthyretin (TTR) proteolysis has been recognized as a complementary mechanism contributing to transthyretin-related amyloidosis (ATTR amyloidosis). Accordingly, amyloid deposits can be composed mainly of full-length TTR or contain a mixture of both cleaved and full-length TTR, particularly in the heart. The fragmentation pattern at Lys48 suggests the involvement of a serine protease, such as plasmin. The most common TTR variant, TTR V30M, is susceptible to plasmin-mediated proteolysis, and the presence of TTR fragments facilitates TTR amyloidogenesis. Recent studies revealed that the serine protease inhibitor, SerpinA1, was differentially expressed in hepatocyte-like cells (HLCs) from ATTR patients. In this work, we evaluated the effects of SerpinA1 on in vitro and in vivo modulation of TTR V30M proteolysis, aggregation, and deposition. We found that plasmin-mediated TTR proteolysis and aggregation are partially inhibited by SerpinA1. Furthermore, in vivo downregulation of SerpinA1 increased TTR levels in mice plasma and deposition in the cardiac tissue of older animals. The presence of TTR fragments was observed in the heart of young and old mice but not in other tissues following SerpinA1 knockdown. Increased proteolytic activity, particularly plasmin activity, was detected in mice plasmas. Overall, our results indicate that SerpinA1 modulates TTR proteolysis and aggregation in vitro and in vivo.  相似文献   

6.
Several degenerative amyloid diseases, with no fully effective treatment, affect millions of people worldwide. These pathologies—amyloidoses—are known to be associated with the formation of ordered protein aggregates and highly stable and insoluble amyloid fibrils, which are deposited in multiple tissues and organs. The disruption of preformed amyloid aggregates and fibrils is one possible therapeutic strategy against amyloidosis; however, only a few compounds have been identified as possible fibril disruptors in vivo to date. To properly identify chemical compounds as potential fibril disruptors, a reliable, fast, and economic screening protocol must be developed. For this purpose, three amyloid fibril formation protocols using transthyretin (TTR), a plasma protein involved in several amyloidoses, were studied using thioflavin-T fluorescence assays, circular dichroism (CD), turbidity, dynamic light scattering (DLS), and transmission electron microscopy (TEM), in order to characterize and select the most appropriate fibril formation protocol. Saturation transfer difference nuclear magnetic resonance spectroscopy (STD NMR) was successfully used to study the interaction of doxycycline, a known amyloid fibril disruptor, with preformed wild-type TTR (TTRwt) aggregates and fibrils. DLS and TEM were also used to characterize the effect of doxycycline on TTRwt amyloid species disaggregation. A comparison of the TTR amyloid morphology formed in different experimental conditions is also presented.  相似文献   

7.
Hereditary transthyretin amyloidosis is the most common form of hereditary amyloidosis, with an autosomal dominant inheritance and a variable penetrance. ATTRv amyloidosis can present as a progressive, axonal sensory autonomic and motor neuropathy or as an infiltrative cardiomyopathy. The definition of biomarkers for the early diagnosis of ATTRv is particularly important in the current era of emerging treatments. In this sense, metabolomics could be an instrument able to provide metabolic profiles with their related metabolic pathways, and we would propose them as possible fluid biomarkers. The aim of this study is to identify altered metabolites (free fatty acids and amino acids) in subjects with a confirmed pathogenic TTR variant. Out of the studied total free fatty acids and amino acids, the serum values of palmitic acid are significantly lower in the ATTRv patients compared to the recruited healthy subjects. The metabolic remodeling identified in this neurogenetic disorder could be the manifestation of pathophysiological processes of the disease, such as mitochondrial dysfunction and neuroinflammation, and contribute to explaining some of its clinical manifestations.  相似文献   

8.
Human transthyretin (hTTR), a serum protein with a main role in transporting thyroid hormones and retinol through binding to the retinol-binding protein, is an amyloidogenic protein involved in familial amyloidotic polyneuropathy (FAP), familial amyloidotic cardiomyopathy, and central nervous system selective amyloidosis. hTTR also has a neuroprotective role in Alzheimer disease, being the major Aβ binding protein in human cerebrospinal fluid (CSF) that prevents amyloid-β (Aβ) aggregation with consequent abrogation of toxicity. Here we report an optimized preparative expression and purification protocol of hTTR (wt and amyloidogenic mutants) for in vitro screening assays of TTR ligands acting as amyloidogenesis inhibitors or acting as molecular chaperones to enhance the TTR:Aβ interaction. Preparative yields were up to 660 mg of homogenous protein per L of culture in fed-batch bioreactor. The recombinant wt protein is mainly unmodified at Cys10, the single cysteine in the protein sequence, whereas the highly amyloidogenic Y78F variant renders mainly the S-glutathionated form, which has essentially the same amyloidogenic behavior than the reduced protein with free Cys10. The TTR production protocol has shown inter-batch reproducibility of expression and protein quality for in vitro screening assays.  相似文献   

9.
The care of systemic amyloidosis has improved dramatically due to improved awareness, accurate diagnostic tools, the development of powerful prognostic and companion biomarkers, and a continuous flow of innovative drugs, which translated into the blooming of phase 2/3 interventional studies for light chain (AL) and transthyretin (ATTR) amyloidosis. The unprecedented availability of effective drugs ignited great interest across various medical specialties, particularly among cardiologists who are now recognizing cardiac amyloidosis at an extraordinary pace. In all amyloidosis referral centers, we are observing a substantial increase in the prevalence of wild-type transthyretin (ATTRwt) cardiomyopathy, which is now becoming the most common form of cardiac amyloidosis. This review focuses on the oral drugs that have been recently introduced for the treatment of ATTR cardiac amyloidosis, for their ease of use in the clinic. They include both old repurposed drugs or fit-for-purpose designed compounds which bind and stabilize the TTR tetramer, thus reducing the formation of new amyloid fibrils, such as tafamidis, diflunisal, and acoramidis, as well as fibril disruptors which have the potential to promote the clearance of amyloid deposits, such as doxycycline. The development of novel therapies is based on the advances in the understanding of the molecular events underlying amyloid cardiomyopathy.  相似文献   

10.
Malnutrition is not only regarded as a complication of rheumatoid arthritis and inflammatory bowel disease but also that of inflammatory skin disease; however, the mechanisms and efficacy of its treatment have not been elucidated. Using a mouse model of dermatitis, we investigated the pathophysiology of malnutrition in inflammatory skin conditions and efficacy of its treatment. We employed spontaneous skin inflammation mice models overexpressing human caspase-1 in the epidermal keratinocytes. Body weight, nutrition level, and α1-antitrypsin fecal concentration were measured. The gastrointestinal tract was histologically and functionally investigated. Fluorescein isothiocyanate (FITC)-dextran was forcibly fed on an empty stomach, and plasma FITC-dextran was measured. The treatment efficacy of antibodies against tumor necrosis factor-α (TNF-α) and interleukin (IL)-α/β as well as Janus kinase (JAK) inhibitors was investigated. Compared with wild-type littermates, the inflammatory skin mice models showed a lowered body weight, reduction of serum albumin level, amyloid deposition in the stomach, small intestine, and large intestine, and increased α1-antitrypsin fecal concentration. However, the plasma FITC-dextran was unchanged between the dermatitis models and wild-type littermates. The over-produced serum amyloid A1 in the liver was detected in the plasma in the dermatitis model. Antibodies against TNF-α and IL-α/β showed partial effects on amyloid deposition; however, JAK inhibitors improved gastrointestinal amyloidosis with the improvement of skin symptoms. Chronic dermatitis is closely related to secondary amyloidosis in the gastrointestinal tract, resulting in hypoalbuminemia. Therefore, active control of skin inflammation is essential for preventing gastrointestinal complications.  相似文献   

11.
β‐Amyloid (Aβ) aggregation is causally linked to neuronal pathology in Alzheimer's disease; therefore, several small molecules, antibodies, and peptides have been tested as anti‐Aβ agents. We developed two compounds based on the Aβ‐binding domain of transthyretin (TTR): a cyclic peptide cG8 and an engineered protein mTTR, and compared them for therapeutically relevant properties. Both mTTR and cG8 inhibit fibrillogenesis of Aβ, with mTTR inhibiting at a lower concentration than cG8. Both inhibit aggregation of amylin but not of α‐synuclein. They both bind more Aβ aggregates than monomer, and neither disaggregates preformed fibrils. cG8 retained more of its activity in the presence of biological materials and was more resistant to proteolysis than mTTR. We examined the effect of mTTR or cG8 on Aβ binding to human neurons. When mTTR was co‐incubated with Aβ under oligomer‐forming conditions, Aβ morphology was drastically changed and Aβ‐cell deposition significantly decreased. In contrast, cG8 did not affect morphology but decreased the amount of Aβ deposited. These results provide guidance for further evolution of TTR‐mimetic anti‐amyloid agents.  相似文献   

12.
Amyloid light-chain (AL) amyloidosis is a rare disease in which plasma-cell-produced monoclonal immunoglobulin light chains misfold and become deposited as fibrils in the extracellular matrix. λ6 subgroup light chains are particularly fibrillogenic, and around 25 % of amyloid-associated λ6 light chains exist as the allotypic G24R variant that renders the protein less stable. The molecular details of this process, as well as the structures of the fibrils, are unknown. We have used solid-state NMR to investigate different fibril polymorphs. The secondary structures derived from NMR predominantly show β-strands, including in former turn or helical regions, and provide a molecular basis for previously identified fibrillogenic hotspots. We have determined, by using differentially 15N:13C-labeled samples, that the β-strands are stacked in-register parallel in the fibrils. This supramolecular arrangement shows that the native globular folds rearrange substantially upon fibrillization, and rules out the previously hypothesized fibril formation from native monomers.  相似文献   

13.
Various amyloid aggregates, in particular, aggregates of amyloid β-proteins, demonstrate in vitro and in vivo cytotoxic effects associated with impairment of cell adhesion. We investigated the effect of amyloid aggregates of smooth-muscle titin on smooth-muscle-cell cultures. The aggregates were shown to impair cell adhesion, which was accompanied by disorganization of the actin cytoskeleton, formation of filopodia, lamellipodia, and stress fibers. Cells died after a 72-h contact with the amyloid aggregates. To understand the causes of impairment, we studied the effect of the microtopology of a titin-amyloid-aggregate-coated surface on fibroblast adhesion by atomic force microscopy. The calculated surface roughness values varied from 2.7 to 4.9 nm, which can be a cause of highly antiadhesive properties of this surface. As all amyloids have the similar structure and properties, it is quite likely that the antiadhesive effect is also intrinsic to amyloid aggregates of other proteins. These results are important for understanding the mechanisms of the negative effect of amyloids on cell adhesion.  相似文献   

14.
Protein aggregation into insoluble amyloid fibrils is the hallmark of several neurodegenerative diseases, chief among them Alzheimer’s and Parkinson’s. Although caused by different proteins, these pathologies share some basic molecular mechanisms with familial amyloidotic polyneuropathy (FAP), a rare hereditary neuropathy caused by amyloid formation and deposition by transthyretin (TTR) in the peripheral and autonomic nervous systems. Among the amyloidogenic TTR mutations known, V30M-TTR is the most common in FAP. TTR amyloidogenesis (ATTR) is triggered by tetramer dissociation, followed by partial unfolding and aggregation of the low conformational stability monomers formed. Thus, tetramer dissociation kinetics, monomer conformational stability and competition between refolding and aggregation pathways do play a critical role in ATTR. Here, we propose a new model to analyze the refolding kinetics of WT-TTR and V30M-TTR, showing that at pH and protein concentrations close to physiological, a two-step mechanism with a unimolecular first step followed by a second-order second step adjusts well to the experimental data. Interestingly, although sharing the same kinetic mechanism, V30M-TTR refolds at a much slower rate than WT-TTR, a feature that may favor the formation of transient species leading to kinetic partition into amyloidogenic pathways and, thus, significantly increasing the probability of amyloid formation in vivo.  相似文献   

15.
A significant portion of the world’s plastic is not properly disposed of and, through various processes, is degraded into microscopic particles termed micro- and nanoplastics. Marine and terrestrial faunae, including humans, inevitably get in contact and may inhale and ingest these microscopic plastics which can deposit throughout the body, potentially altering cellular and molecular functions in the nervous and other systems. For instance, at the cellular level, studies in animal models have shown that plastic particles can cross the blood–brain barrier and interact with neurons, and thus affect cognition. At the molecular level, plastics may specifically influence the folding of proteins, induce the formation of aberrant amyloid proteins, and therefore potentially trigger the development of systemic and local amyloidosis. In this review, we discuss the general issue of plastic micro- and nanoparticle generation, with a focus on their effects on protein folding, misfolding, and their possible clinical implications.  相似文献   

16.
In amyloid light-chain (AL) amyloidosis, small B-cell clones (mostly plasma cell clones) present in the bone marrow proliferate and secrete unstable monoclonal free light chains (FLCs), which form amyloid fibrils that deposit in the interstitial tissue, resulting in organ injury and dysfunction. AL amyloidosis progresses much faster than other types of amyloidosis, with a slight delay in diagnosis leading to a marked exacerbation of cardiomyopathy. In some cases, the resulting heart failure is so severe that chemotherapy cannot be administered, and death sometimes occurs within a few months. To date, many clinical studies have focused on therapeutics, especially chemotherapy, to treat this disease. Because it is necessary to promptly lower FLC, the causative protein of amyloid, to achieve a hematological response, various anticancer agents targeting neoplastic plasma cells are used for the treatment of this disease. In addition, many basic studies using human specimens to elucidate the pathophysiology of AL have been conducted. Gene mutations associated with AL, the characteristics of amyloidogenic LC, and the structural specificity of amyloid fibrils have been clarified. Regarding the mechanism of cellular and tissue damage, the mass effect due to amyloid deposition, as well as the toxicity of pre-fibrillar LC, is gradually being elucidated. This review outlines the pathogenesis and treatment strategies for AL amyloidosis with respect to its molecular mechanisms.  相似文献   

17.
Amyloidoses is a group of diseases characterized by the accumulation of abnormal proteins (called amyloids) in different organs and tissues. For systemic amyloidoses, the disease is related to increased levels and/or abnormal synthesis of certain proteins in the organism due to pathological processes, e.g., monoclonal gammopathy and chronic inflammation in rheumatic arthritis. Treatment of amyloidoses is focused on reducing amyloidogenic protein production and inhibition of its aggregation. Therapeutic approaches critically depend on the type of amyloidosis, which underlines the importance of early differential diagnostics. In fact, the most accurate diagnostics of amyloidosis and its type requires analysis of a biopsy specimen from the disease-affected organ. However, absence of specific symptoms of amyloidosis and the invasive nature of biomaterial sampling causes the late diagnostics of these diseases, which leads to a delayed treatment, and significantly reduces its efficacy and patient survival. The establishment of noninvasive diagnostic methods and discovery of specific amyloidosis markers are essential for disease detection and identification of its type at earlier stages, which enables timely and targeted treatment. This review focuses on current approaches to the diagnostics of amyloidoses, primarily with renal involvement, and research perspectives in order to design new specific tests for early diagnosis.  相似文献   

18.
Light chain (AL) amyloidosis is a devastating disease characterized by amyloid deposits formed by immunoglobulin light chains. Current available treatments involve conventional chemotherapy and autologous stem cell transplant. We have recently concluded a phase III trial comparing these two treatments. AL amyloidosis patients who achieve hematological complete response (CR) do not necessarily achieve organ response regardless of the treatment they received. In order to investigate the possible correlation between amyloid formation kinetics and organ response, we selected AL amyloidosis patients from the trial with kidney involvement and CR after treatment. Six patients were selected and their monoclonal immunoglobulin light chains were characterized. The proteins showed differences in their stability and their kinetics of amyloid formation. A correlation was detected at pH 7.4, showing that less stable proteins are more likely to form amyloid fibrils. AL-T03 is too unstable to form amyloid fibrils at pH 7.4. This protein was found in the only patient in the study that had organ response, suggesting that partially folded species are required for amyloid formation to occur in AL amyloidosis.  相似文献   

19.
Light chain amyloidosis (AL) is caused by the aberrant overproduction of immunoglobulin light chains (LCs). The resulting abnormally high LC concentrations in blood lead to deposit formation in the heart and other target organs. Organ damage is caused not only by the accumulation of bulky amyloid deposits, but extensive clinical data indicate that circulating soluble LCs also exert cardiotoxic effects. The nematode C. elegans has been validated to recapitulate LC soluble toxicity in vivo, and in such a model a role for copper ions in increasing LC soluble toxicity has been reported. Here, we applied microscale thermophoresis, isothermal calorimetry and thermal melting to demonstrate the specific binding of Cu2+ to the variable domain of amyloidogenic H7 with a sub-micromolar affinity. Histidine residues present in the LC sequence are not involved in the binding, and yet their mutation to Ala reduces the soluble toxicity of H7. Copper ions bind to and destabilize the variable domains and induce a limited stabilization in this domain. In summary, the data reported here, elucidate the biochemical bases of the Cu2+-induced toxicity; moreover, they also show that copper binding is just one of the several biochemical traits contributing to LC soluble in vivo toxicity.  相似文献   

20.
Systemic amyloidosis is recognized as a serious complication of rheumatoid arthritis or inflammatory bowel disease, but also of inflammatory skin disease. However, the detailed molecular mechanism of amyloidosis associated with cutaneous inflammation remains unclear, and therapeutic approaches are limited. Here, we investigated the pathophysiology of amyloidosis secondary to cutaneous inflammation and the therapeutic effects of Janus kinase (JAK) inhibitors by examining a mouse model of spontaneous dermatitis (KCASP1Tg mice). Moreover, KCASP1Tg mice were crossed with interleukin-17A (IL-17A) knockout mice to generate IL-17A-/KCASP1Tg and examine the role of IL-17A in amyloidosis under cutaneous inflammation. KCASP1Tg mice showed severe amyloid deposition in the liver and spleen. Increased serum-neutral fat levels and decreased lymphocyte production were observed in the spleen. Overproduction of amyloidosis was partially ameliorated by the administration of JAK inhibitors and was further improved in IL-17A-/KCASP1Tg mice. IL-17A-producing cells included CD4, gamma delta, and CD8 T cells. In summary, our results from the analysis of a mouse model of dermatitis revealed that skin-derived inflammatory cytokines can induce amyloid deposition in the liver and spleen, and that the administration of JAK inhibitors and, even more, IL-17A ablation, reduced amyloidosis. This study demonstrates that active control of skin inflammation is essential to prevent internal organ amyloidosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号