首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infection with African trypanosomes causes the diseases sleeping sickness in humans and nagana in cattle in sub-Saharan Africa. Suppression of cellular immune responses is a feature of trypanosomiasis in bovine, human, and murine hosts. Some aspects of immunosuppression in the murine model are mediated by nitric oxide (NO) produced by gamma interferon (IFN-gamma)-activated macrophages. We have investigated whether a similar mechanism is responsible for T-cell unresponsiveness in bovine trypanosomiasis. Bovine monocytes and macrophages from uninfected cattle and activated in vitro with IFN-gamma produced NO; however, this response was down-regulated in infected cattle. Similarly, the expression of inducible NO synthase messenger RNA was depressed in macrophages of infected cattle. Proliferation of mononuclear cells of trypanosome-infected cattle cultured with mitogen or trypanosome antigens was unchanged by the addition of an NO synthase inhibitor. Lymphocytes of infected cattle secreted interleukins with T-cell growth factor activity after in vitro activation with mitogens but not after activation with trypanosome antigens. Although lymph node cells secreted IFN-gamma after in vitro activation, ex vivo expression of mRNA was depressed. In contrast, the level of expression of interleukin 10 mRNA was higher during infection. We conclude that NO is not involved in the loss of T-cell proliferative function associated with trypanosomiasis in cattle and that, in contrast to the mouse model, the capacity of monocytes and macrophages to produce NO is actually down-regulated in infected cattle.  相似文献   

2.
Biosynthesis of nitric oxide (NO) and tetrahydrobiopterin (BH4) was investigated during cytokine-mediated activation of chicken macrophages. Monocyte derived macrophages and HD11 cells, a chicken macrophage cell line, constitutively synthesize BH4. Treatment of these cells with chicken macrophage activation factor (ChMAF) causes up to 10-fold increases of intracellular BH4 and of nitrite concentrations in the cell culture supernatant. Elevated BH4 levels correlate with an increase in GTP-cyclohydrolase I (GTP-CH) activity. Kinetic studies show a joint upregulation of GTP-CH activity and NO synthase activity first detectable 4 hr after stimulation. A corresponding increase in the mRNA for GTP-CH was detected by Northern blot analysis with a chicken GTP-CH specific cDNA probe. These results demonstrate that cytokine-induced BH4 synthesis by chicken macrophages is at least partially regulated through increased GTP-CH gene expression. The functional relevance of BH4 formation for NO production is shown by experiments using 2,4-diamino-6-hydroxypyrimidine (DAHP) as a specific inhibitor of GTP-CH. Monocyte derived macrophages stimulated in the presence of DAHP show a significant decrease in NO synthesis. The effect of DAHP was reversed by adding sepiapterin, which allows synthesis of BH4 through a salvage pathway.  相似文献   

3.
4.
5.
Inducible nitric oxide synthase dependent production of nitric oxide (NO) plays an important role in inflammation. We investigated whether pristimerin ((20alpha)-3-hydroxy-2-oxo-24-nor-friedela-1(10),3,5,7-te traen-carboxylic acid-(29)-methylester), an antitumoral, antimicrobial as well as anti-inflammatory plant compound, has an effect on the inducible NO synthase system in lipopolysaccharide-activated RAW 264.7 macrophages. Pristimerin dose dependently (IC50: 0.2-0.3 microM) reduces nitrite accumulation, a parameter for NO synthesis, in supernatants of lipopolysaccharide-stimulated (1 microg/ml, 20 h) macrophages. This effect correlates with a reduced inducible NO synthase enzyme activity measured by conversion of [3H]L-arginine to [3H]L-citrulline and significantly lower levels of enzyme protein (Western blotting) in homogenates of cells cotreated with lipopolysaccharide and pristimerin (12 h). Northern blot analysis and polymerase chain reaction (PCR) showed decreased inducible NO synthase mRNA levels in activated macrophages exposed to pristimerin (4 h). Electrophoretic mobility shift assay (EMSA) demonstrated a markedly reduced binding activity of nuclear factor-kappa B (NFkappaB) in nuclear extracts of pristimerin-treated cells. These results suggest that pristimerin inhibits the induction of inducible NO synthase by a mechanism which involves inhibition of NFkappaB activation. This feature of pristimerin is likely to contribute to its anti-inflammatory activity.  相似文献   

6.
The ability of lipid A and the antitumour compound, ONO-4007 (sodium2-deoxy-2-[3S-(9-phenylnonanoyloxy)tetradecanoyl] amino-3-O-(9phenylnonanoyl)-D-glucopyranose 4-sulphate) to induce nitric oxide (NO) synthase was investigated in vitro and in vivo, in comparison to the effects of lipopolysaccharide and di- and monophosphoryl lipid A. In J744.2 macrophages, lipopolysaccharide, di-and monophosphoryl lipid A and ONO-4007 (10(-9) - 10(-5) g/ml) alone, or in combination with interferon-gamma, induced NO synthase (order of potency: lipopolysaccharide > diphosphoryl lipid A > monophosphoryl lipid A > ONO-4007). ONO-4007 increased the activity of the inducible NO synthase in the lung of anesthetised rats (20% of the increased caused by bacterial lipopolysaccharide). Thus, ONO-4007 is a weak inducer of the inducible isoform of NO synthase in vitro and in vivo. The finding that di- and monophosphoryl lipid A also induce NO synthase indicates that the lipid A moiety of lipopolysaccharide contributes to the induction of NO synthase by lipopolysaccharide. The induction of NO synthase by ONO-4007, resulting in the formation of cytotoxic NO may contribute to the antitumour activity of the compound.  相似文献   

7.
Nitric oxide (NO) production in macrophages by inducible nitric oxide synthase (NOS2) has multiple tissue damaging effects and is involved in the pathogenesis of inflammation and graft rejection. Haem oxygenase (HmOx) is the enzyme which degrades haem. Its inducible isoform, HmOx1, was recently shown to increase cellular resistance against oxidative stress and to decrease inflammation and graft rejection. Since haem is an essential cofactor for NOS2 activity, we investigated the effects of HmOx1-induction upon NO secretion in macrophages. We induced HmOx1 in BALB/c bone-marrow-derived macrophages by short-term exposure to haemin (20 micromol/l, 30 min); then we incubated them for 24 h to allow maximal expression of HmOx1 activity. Next, we activated the macrophages with lipopolysaccharide (LPS) and measured their NO production and their NO-dependent cytotoxicity against P815 cells. We found that HmOx induction 24 h before LPS activation in mouse macrophages suppresses their production of NO, while HmOx inhibition (with zinc protoporphyrin) increases NO secretion. NOS2 inhibition is reflected by the decrease of macrophage NO-dependent cytotoxicity against the P815 targets. We therefore propose that HmOx1 is a physiological inhibitor of NOS2 in activated macrophages because it decreases haem availability for NOS2 synthesis. NOS2 inhibition may explain the antinflammatory effects of HmOx induction which could also be used therapeutically in situations when NO hyperproduction leads to cytotoxic effects such as inflammation or transplant rejection.  相似文献   

8.
The effect of cycloheximide (CHX) on the gene expression for inducible NO synthase (iNOS), interferon (IFN)-beta, and IFN regulatory factor (IRF)-1 was examined in LPS-stimulated J774 macrophages. LPS caused increased expression of mRNAs specific for iNOS, IFN-beta, and IRF-1 with different kinetics. Addition of CHX resulted in inhibition of the LPS-induced iNOS gene expression and parallel decrease in NO production. In contrast, expression of IFN-beta and IRF-1 genes in response to LPS was potentiated in the presence of CHX. These results indicate that de novo protein synthesis is not required for IFN-beta and IRF-1 gene expression and that ongoing protein synthesis including IFN-beta and IRF-1 may be involved in the induction process of iNOS in mouse macrophages.  相似文献   

9.
Here we report that macrophages in the rat superior cervical ganglia (SCG) respond differently to pre- and postganglionic axotomy. Postganglionic axotomy results in a rapid activation of resident macrophages, as measured by inducible nitric oxide synthase (iNOS) immunoreactivity, and a massive invasion by macrophages. Following preganglionic lesion there was no such rapid activation and the macrophage invasion was of much lower magnitude. A subpopulation of the macrophages also expressed haem oxygenase-1 (HO-1). The results are compatible with a model in which macrophages or their products, including nitric oxide (NO) and carbon monoxide (CO) could be important for induction of early changes in the nerve cell body, like an altered neuropeptide synthesis, which has been shown to accompany the regenerative response in peripheral ganglia.  相似文献   

10.
Polyamines are endogenous regulators of various cell functions. Nitric oxide (NO) is a cytostatic and cytotoxic free radical which is produced by the inducible NO synthase (iNOS) in immuno-stimulated macrophages. We tested whether spermine modulates the induction of iNOS in J774.2 macrophages. Stimulation of macrophages by bacterial lipopolysaccharide (LPS) or gamma-interferon increased the accumulation of nitrite in the culture medium. Spermine (10(-6) - 10(-4) M) inhibited nitrite production without causing cytotoxicity. This inhibition of NO formation by spermine was significantly reduced when it was given 6 h after LPS. Spermine did not inhibit nitrite accumulation when foetal calf serum was omitted from the tissue culture medium. Thus, spermine is an inhibitor of the induction of iNOS, and its inhibitory activity requires the presence of a serum factor.  相似文献   

11.
This study explores the role of mevalonate inhibitors in the activation of NF-kbeta and the induction of inducible nitric oxide synthase (iNOS) and cytokines (TNF-alpha, IL-1beta, and IL-6) in rat primary astrocytes, microglia, and macrophages. Lovastatin and sodium phenylacetate (NaPA) were found to inhibit LPS- and cytokine-mediated production of NO and expression of iNOS in rat primary astrocytes; this inhibition was not due to depletion of end products of mevalonate pathway (e.g., cholesterol and ubiquinone). Reversal of the inhibitory effect of lovastatin on LPS-induced iNOS expression by mevalonate and farnesyl pyrophosphate and reversal of the inhibitory effect of NaPA on LPS-induced iNOS expression by farnesyl pyrophosphate, however, suggests a role of farnesylation in the LPS-mediated induction of iNOS. The inhibition of LPS-mediated induction of iNOS by FPT inhibitor II, an inhibitor of Ras farnesyl protein transferase, suggests that farnesylation of p21(ras) or other proteins regulates the induction of iNOS. Inhibition of LPS-mediated activation of NF-kbeta by lovastatin, NaPA, and FPT inhibitor II in astrocytes indicates that the observed inhibition of iNOS expression is mediated via inhibition of NF-kbeta activation. In addition to iNOS, lovastatin and NaPA also inhibited LPS-induced expression of TNF-alpha, IL-1beta, and IL-6 in rat primary astrocytes, microglia, and macrophages. This study delineates a novel role of the mevalonate pathway in controlling the expression of iNOS and different cytokines in rat astrocytes, microglia, and macrophages that may be important in developing therapeutics against cytokine- and NO-mediated neurodegenerative diseases.  相似文献   

12.
The role of protein kinase C (PKC) in the induction of nitric oxide (NO) synthesis in murine peritoneal macrophages was examined. Phorbol ester, a PKC activator, had no effect on NO synthesis by itself, whereas IFN-gamma alone had modest activity. When phorbol ester was used in combination with IFN-gamma, there was a marked cooperative induction of NO synthesis in a dose-dependent manner. This increase in NO synthesis was reflected as increased amount of inducible NO synthase (iNOS) mRNA, as determined by Northern blotting. The optimal effect of phorbol ester was shown at 6 h after treatment with IFN-gamma. Phorbol ester also induced the release of NO to the incubation medium by bacillus Calmette-Guerin-infected peritoneal macrophages. Prolonged incubation of cells with phorbol ester, which down-regulates PKC activity, abolished the synergistic cooperative effect on NO production with IFN-gamma. In addition, such PKC inhibitors as staurosporin or polymyxin B reduced NO production induced by IFN-gamma plus phorbol ester. When the cells were treated with both actinomycin D and phorbol ester after IFN-gamma stimulation, more NO was produced and more iNOS mRNA was expressed than in the cells treated with actinomycin D alone. On the basis of these observations, we conclude that PKC might not be directly involved in the expression of NO synthase, but, instead, might be involved in the stabilization of the iNOS mRNA already expressed by the treatment of IFN-gamma.  相似文献   

13.
14.
Ribonucleotide reductase is essential for DNA synthesis in cycling cells. It has been previously shown that the catalytically competent tyrosyl free radical of its small R2 subunit (R2-Y.) is scavenged in tumor cells co-cultured with macrophages expressing a nitric oxide synthase II activity. We now demonstrate a loss of R2-Y. induced either by .NO or peroxynitrite in vitro. The .NO effect is reversible and followed by an increase in ferric iron release from mouse protein R2. A similar increased iron lability in radical-free, diferric metR2 protein suggests reciprocal stabilizing interactions between R2-Y. and the diiron center in the mouse protein. Scavenging of R2-Y. by peroxynitrite is irreversible and paralleled to an irreversible loss of R2 activity. Formation of nitrotyrosine and dihydroxyphenylalanine was also detected in peroxynitrite-modified protein R2. In R2-overexpressing tumor cells co-cultured with activated murine macrophages, scavenging of R2-Y. following NO synthase II induction was fully reversible, even when endogenous production of peroxynitrite was induced by triggering NADPH oxidase activity with a phorbol ester. Our results did not support the involvement of peroxynitrite in R2-Y. scavenging by macrophage .NO synthase II activity. They confirmed the preponderant physiological role of .NO in the process.  相似文献   

15.
Nitric oxide (NO measured as nitrite, NO2-) is the major effector molecule produced by activated macrophages for in vitro cytotoxicity against Entamoeba histolytica trophozoites. In this study, we determine whether tumor necrosis factor alpha (TNF-alpha) produced by activated bone marrow-derived macrophages (BMM) is involved in the induction of the inducible NO synthase gene (mac-NOS) for NO-dependent amebicidal activity. TNF-alpha alone did not directly induce macrophage NO2- production to kill amebae; however, in combination with increasing concentrations of TNF-alpha and gamma interferon (IFN-gamma), BMM amebicidal activity and NO2- production progressively increased and showed a significant linear correlation. Antiserum to TNF-alpha and the NO synthase inhibitor NG-monomethyl L-arginine (L-NMMA) inhibited the synergistic effects of TNF-alpha and IFN-gamma. BMM activated with increasing concentrations of lipopolysaccharide (LPS) and IFN-gamma showed a significant linear correlation between TNF-alpha release and NO2- production. Antiserum to TNF-alpha suppressed TNF-alpha release, NO2- production, and amebicidal activity by 93, 53, and 86%, respectively. L-NMMA diminished NO2- production by 74% and macrophage amebicidal activity by 83% but had no effect on TNF-alpha release. Quantification by Northern (RNA) blot analyses demonstrated that IFN-gamma in combination with TNF-alpha or LPS increased markedly the accumulation of mac-NOS and TNF-alpha mRNAs in a time-dependent manner with a concomitant increase in NO and TNF-alpha production. Peak induction of mac-NOS occurred after 24 h, whereas TNF-alpha mRNA was rapidly expressed after 4 h and remained stable for 48 h. Taken together, these data argue that TNF-alpha augments NO-dependent macrophage cytotoxicity against E. histolytica via elevated levels of mac-NOS mRNA expression which may be associated with the accumulation of TNF-alpha mRNA.  相似文献   

16.
Nitric oxide (NO) production by macrophages is mainly regulated by induction of nitric oxide synthase (iNOS) by cytokines and microbial products. Nicotinamide (NIC) inhibits NO production by activated macrophages in a dose dependent manner. NIC also inhibits NOS enzyme activity in extracts from activated macrophages. The inhibition was noncompetitive with L-arginine (Ki 13.37 +/- 4.40 mM, n=3), uncompetitive versus NADPH (Ki 3.06 +/- 0.17 mM, n=3) and tetrahydrobiopterin. Finally, the inhibition by nicotinamide was fully reversed by scavenging NO with hemoglobin. We suggest that NIC acts by allowing NO to inhibit its own formation.  相似文献   

17.
18.
To investigate the pathobiology of severe acute pancreatitis, we studied the expression of inducible nitric oxide synthase (iNOS) in peritoneal macrophages of experimental pancreatitis. Taurocholate (TCA) pancreatitis and cerulein (CE) pancreatitis were used as models of lethal and self-limited pancreatitis, respectively, and the mechanism of iNOS expression in peritoneal macrophages was studied. Serum nitrate and nitrite (NOx) concentrations increased during the course of TCA pancreatitis, and iNOS-immunoreactivity was detected in the peritoneal macrophages 12 h after the induction of TCA pancreatitis, but these phenomena were not observed in CE pancreatitis. Despite the difference in the iNOS expression, the iNOS messenger RNA (mRNA) and the activation of nuclear factor-kappa B (NF-kappa B) were detected in the peritoneal macrophages of both pancreatitis models. The supernatant of TCA pancreatitis ascites could induce iNOS in the peritoneal macrophages of normal rats in vitro, but the peritoneal lavage fluid of CE pancreatitis rats could not. The results indicated that there may be qualitative or quantitative differences in the macrophage activation between the two types of experimental pancreatitis and suggested that the ascites of rats with lethal acute pancreatitis contains some soluble factors that activate the macrophage/monocyte system and cause an overproduction of NO by the iNOS expression.  相似文献   

19.
Availability of mice with a targeted disruption of the interferon gamma (IFN-gamma) receptor gene (IFN-gamma R0/0 mice) made it possible to examine parameters of macrophage activation in the absence of a functional IFN-gamma receptor. We asked to what extent other cytokines could replace IFN-gamma in the induction of nitric oxide or major histocompatibility complex class II antigen (Ia) expression in peritoneal macrophages. In thioglycollate-elicited macrophages from wild-type mice, tumor necrosis factor (TNF) alone was virtually ineffective in inducing release of NO2- (the endproduct of nitric oxide generation), but TNF enhanced NO2- release in the presence of IFN-gamma. In macrophages from IFN-gamma R0/0 mice, which were unresponsive to IFN-gamma, TNF completely failed to stimulate NO2- release. The stimulatory actions of IFN-alpha/beta on NO2- release were indistinguishable in wild-type and IFN-gamma R0/0 macrophages: IFN-alpha/beta was ineffective on its own, showed marginal stimulation of NO2- release in combination with TNF, and was moderately effective in the presence of lipopolysaccharide. The level of constitutive Ia antigen expression was not significantly different in peritoneal macrophages from wild-type and IFN-gamma R0/0 mice. An increased Ia expression was induced by IL-4 and granulocyte-macrophage colony-stimulating factor in both wild-type and IFN-gamma R0/0 macrophages, but the magnitude of this induction was less than with optimal concentrations of IFN-gamma in macrophages from wild-type mice. IFN-alpha/beta showed only a minor stimulatory effect on Ia expression in both wild-type and IFN-gamma R0/0 macrophages. Simultaneous treatment of wild-type macrophages with IFN-alpha/beta and IFN-gamma reduced the IFN-gamma-induced Ia expression in wild-type macrophages, but IFN-alpha/beta did not show an inhibitory effect on IL-4- or granulocyte-macrophage-colony-stimulating factor-induced Ia expression in either wild-type or IFN-gamma R0/0 macrophages. The important role of IFN-gamma in the regulation of the induced expression of major histocompatibility complex class II antigen was confirmed by showing that after systemic infection with the BCG strain of Mycobacterium bovis resident peritoneal macrophages from IFN-gamma R0/0 mice had a lower level of Ia expression than macrophages from wild-type mice. The inability of other cytokines to substitute fully for IFN-gamma in macrophage activation helps to explain the earlier observed decreased resistance of IFN-gamma R0/0 mice to some infections.  相似文献   

20.
Nitric oxide (NO) induction through the inducible NO synthase has been demonstrated to cause cell death in macrophages. We demonstrate that, in macrophages that have been rendered resistant to apoptosis induced by inducible NO synthase (RES cells), exposure to exogenous NO donors results in a hypersensitive apoptosis reaction when compared with the parental RAW 264.7 cells. The apoptosis induced via exogenous NO donors was found to be caspase 3-independent. Although caspase 3 activity was stimulated in the apoptotic macrophages, inhibition of caspase 3 by the inhibitor DEVD-CHO (N-acetyl-Asp-Glu-Val-Asp-aldehyde) did not reverse the apoptosis induced by the NO donor S-nitrosoglutathione (GSNO). This suggests that although caspase 3 activity is stimulated during apoptosis in macrophages, this signal is not sufficient to induce apoptosis. Cleavage of the enzyme poly(ADP ribose) polymerase mirrors our results of the caspase activity. Interestingly, we show that exogenous NO donation results in an accumulation of cells at the G2/M-phase border. Here, we demonstrate that the mitogen activated protein kinase kinase (MEK) inhibitor PD 098059 can be used to reverse the G2/M-phase block and show that this treatment also inhibits the observed apoptosis in RES macrophages. Treatment with the MEK inhibitor also reversed both the caspase 3 activity and poly(ADP ribose) polymerase cleavage in cells treated with GSNO. This result indicates that the mitogen-activated protein kinase pathway may be involved in regulation of the caspase cascade. Alternatively, it may suggest an activity for the MEK inhibitor heretofore not observed, that of a cyclin kinase inhibitor. Our results suggest that selection of macrophages by resistance to endogenously generated NO may cause hypersensitivity to exogenous NO donors. These findings have relevant implications for the treatment of apoptotic-resistant cell populations that may occur in both cancer and atheroma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号