首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
In this study, polyamide 4,6 (PA 4,6)-based nanocomposites were successfully prepared using a twin screw extruder. A commercial organo-montmorillonite (denoted as 30B) and a commercial maleated polyolefin elastomer (denoted as POEMA) served as the reinforcing filler and toughener, respectively. X-ray diffraction (XRD) and transmission electron microscopy (TEM) results confirmed the nano-scaled dispersion of 30B in the composites. Nevertheless, the presence of POEMA slightly depreciated the dispersibility of 30B. Polarized light microscope (PLM) observations showed that the inclusions of 30B and POEMA led to the formation of diffused/broken PA 4,6 spherulites. Differential scanning calorimetry (DSC) results indicated that the addition of 30B retarded the crystallization of PA 4,6; the addition of POEMA led to a similar retardation effect on PA 4,6 crystallization. Interesting melting behaviors associated mainly with the crystal annealing of PA 4,6 upon heating were observed for the fast-cooled samples. The presence of POEMA was noted to hamper the annealing process of PA 4,6 crystals. The thermal stability enhancement of PA 4,6 in the presence of 30B was further raised to a higher extent when POEMA was included in the matrix. The rigidity, including the storage/Young's/flexural moduli, of PA 4,6 significantly increased after adding 30B. These properties, however, declined after the additional incorporation of POEMA. The PA 4,6/POEMA/30B nanocomposites basically displayed balanced impact strength between those of the neat PA 4,6 and PA 4,6/POEMA blends.  相似文献   

2.
Binary and ternary poly(vinylidene fluoride) (PVDF) nanocomposites filled with organoclay (15A) and/or multi-walled carbon nanotubes (MWNTs) were successfully prepared. MWNTs were dispersed more homogeneously than 15A within PVDF matrix, and the presence of MWNTs facilitated the dispersibility of 15A. The 15A addition induced β-form PVDF crystal formation, but MWNTs hardly changed the α-form crystal development. Both nanofillers facilitated the nucleation of PVDF (up to 12.3 °C increase), and the efficiency of enhancing PVDF crystallization followed the sequence MWNT > 15A/MWNT > 15A. The nanocomposites possess higher Tm° than neat PVDF. In particular, adding 15A led to a Tm° (β-form) increase of no less than 11 °C. A rheological percolation threshold at 1 wt.% MWNT loading was determined. The electrical resistivity dropped by more than 13 orders of magnitude at 5 wt.% MWNT loading. The nanocomposites exhibited enhanced tensile modulus (up to 83% increase with MWNTs inclusion) compared with neat PVDF.  相似文献   

3.
The objective of this study is to explore the potential of layered zinc hydroxide nitrate modified with sodium benzoate as nanoparticle in thermoplastic polyester elastomer (TPEE). The organically modified zinc hydroxide nitrate was compounded with TPEE using solution blending method. The nanocomposite structure was characterized by means of X-ray diffraction and transmission electron microscopy. The results showed that the nanoparticle was homogenously dispersed in TPEE matrix, and partially exfoliated structure was formed. The thermal behavior, mechanical and thermal combustion properties of the novel nanocomposite were studied respectively through differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA) and microscale combustion calorimeter (MCC). For the nanocomposite containing 7 wt% nanoparticle, the crystallization temperature evaluated by DSC was increased by 10 °C. The storage modulus at −95 °C measured by DMA was improved by around 26%. The heat release capacity (an indicator of a material fire hazard) from MCC testing was reduced by about 56% (compared to the results of neat TPEE).  相似文献   

4.
Poly(methyl methacrylate) (PMMA)/dodecylamine templated lamellar aluminophosphate (DDA-LAP) intercalated nanocomposites are prepared by in situ bulk polymerization of MMA. The intercalated structure is characterized. With the intercalation of DDA-LAP in PMMA matrix, the glass-transition temperatures of nanocomposites (Tg) are increased. The nanocomposites obtained keep relatively high transparency in optical property and have a significant improvement in mechanical properties and thermal stability. The mechanism for the properties enhancement is investigated. The strong interfacial interaction between the aluminophosphate layers and the PMMA chains, the homogeneously distribution and the graphitized char formation during heating are three key roles for the properties improvement.  相似文献   

5.
In this work, new polyacrolein/MCM-41 nanocomposites with good phase mixing behavior were prepared through an emulsion polymerization technique. Mesoporous silica was synthesized by in situ assembly of tetraethyl orthosilicate (TEOS) and cetyl trimethyl ammonium bromide (CTAB). The structure and properties of polyacrolein containing nanosized MCM-41 particle (5 and 10 wt%), were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, Dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption techniques, and thermogravimetric (TGA) analyses. The SEM images from the final powder have revealed good dispersion of the MCM-41 nanoparticles throughout polymeric matrix with no distinct voids between two phases. The results indicated that the thermal properties of the nanocomposite were enhanced by addition of MCM-41. Thermomyces lanuginosa lipase (TLL) was used as a model biocatalyst and successfully immobilized with polyacrolein and the nanocomposite via covalent bonds with the aldehyde groups. The activity between free enzyme, polyacrolein, and MCM-41 nanocomposite (10 wt%)-immobilized TLL was compared. The immobilized lipase with the nanocomposite shows better operational stability such as pH tolerance, thermal and storage stability. In addition, the immobilized lipase with the nanocomposite can be easily recovered and retained at 74% of its initial activity after 15 time reuses.  相似文献   

6.
The synergistic effect of organo-modified montmorillonite (Nanomer I28E and Cloisite 20A) and metal hydroxides (magnesium hydroxide MH and alumina trihydrate ATH) as flame retardants in LDPE/EVA nanocomposites compatibilized with amino alcohol grafted polyethylene (PEgDMAE) was studied. Morphological characterization of nanocomposites was carried out by means of X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM). Flame-retardant properties of nanocomposites were evaluated by the UL-94 horizontal burning and cone calorimeter tests and limiting oxygen index (LOI). Thermal degradation behavior was analyzed with a Fourier transform infrared coupled with the thermogravimetric analyzer (TG-FTIR). The XRD analysis showed a displacement of the d001 plane characteristic peak of clay to lower angles, which indicates an intercalated–exfoliated morphology. From STEM images it was observed a good dispersion of flame retardants (MH and ATH) throughout the polymer matrix which was reflected in flame-retardant properties. TG-FTIR showed a better thermal stability of nanocomposites and the gases evolved during combustion showed an important reduction. Based on thermal stability and thermal degradation results, the flame-retardant mechanism of LDPE/PEgDMAE/EVA/Clay/MH nanocomposites was proposed.  相似文献   

7.
Aromatic polyamide/organoclay nanocomposites were synthesized using the solution blending technique. Treatment of montmorillonite clay with p-phenylenediamine produced reactive organophilic clay for good compatibility with the matrix. Polyamide chains were prepared by condensing a mixture of 1,4-phenylenediamine and 4-4′-oxydianiline with isophthaloyl chloride under anhydrous conditions. These chains were end capped with carbonyl chloride using 1% extra acid chloride near the end of reaction to develop the interactions with organoclay. The dispersion and structure–property relationship were monitored using FTIR, XRD, FE-SEM, TEM, DSC and tensile testing of the thin films. The structural investigations confirmed the formation of delaminated and disordered intercalated morphology with nanoclay loadings. This morphology of the nanocomposites resulted in their enhanced mechanical properties. The tensile behavior and glass transition temperature significantly augmented with increasing organoclay content showing a greater interaction between the two disparate phases.  相似文献   

8.
The fascinating architecture of hyperbranched polymer imparts a truck load of novel properties to the material. Epoxy resin modified Mesua ferrea L. seed oil based hyperbranched polyurethane (MHBPU) nanocomposites were prepared by in situ technique using s-triazine based highly branched poly(amido amine) (HBPAA) modified organo-nanoclay. The HBPAA was synthesized by A2 + B3 technique with good yield (>75%) using urea and s-triazine. The formation of the polymer was confirmed with the help of 1H NMR, FTIR, UV spectroscopic, and measurements of solution viscosity with other physical properties. This HBPAA was successfully utilized to swell the montmorillonite organo-nanoclay as the interlayer gallery distance increases up to 8.2 Å, obtained by XRD study. The FTIR further confirmed the presence of interactions of the HBPAA moiety with the organo-clay layers. The formation of nanocomposites was confirmed by FTIR, XRD, SEM, TEM and rheological studies. The improvements of tensile strength (1.7 times) and scratch hardness (2.3 times) along with the dramatic enhancement of thermostability and flame retardancy without compromising impact resistance, bending, and elongation at break of the nanocomposites compared to pristine MHBPU thermoset are the noticeable credits of the present investigation. The results signify the great potential of the studied materials for various advanced applications.  相似文献   

9.
Styryl-functionalized multiwalled carbon nanotubes (p-MWNTs) were prepared by esterification based on the carboxylate salt of carbon nanotubes and p-chloromethylstyrene in toluene. Then in situ radical copolymerization of p-MWNTs and styrene initiated by 2,2′-azobis(isobutyronitrile) (AIBN) was applied to synthesize composites of styryl-functionalized multiwalled carbon nanotubes and polystyrene (PS) (p-MWNTs/PS). Characterizations carried out by FT-IR, 1H NMR, UV–vis show that styryl group covalently bond to the surface of MWNTs. The results of UV showed that the solutions of p-MWNTs/PS in chloroform have the hyperchromic effect. Transmission electron microscopy (TEM) images of p-MWNTs/PS composites and scanning electron microscopy (SEM) images of fracture surface of p-MWNTs/PS composites showed the functionalized nanotubes had a better dispersion than that of the unfunctionalized MWNTs in the matrix. The results of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) suggested that the thermal stability of p-MWNTs/PS composites improved in the presence of MWNTs.  相似文献   

10.
A novel interlamellar surface modification of layered double hydroxides (LDHs) via covalent bonding by toluene-2,4-di-isocyanate (TDI) has been successfully obtained, and poly(vinyl chloride) (PVC)/TDI-modified LDH nanocomposites have been prepared via solution intercalation process. After the interlamellar modification, TDI was grafted to the surface hydroxyl groups of LDHs with nitrate, dodecyl sulfate or stearate anion as counterion anion. The structures of the TDI-modified LDHs and the nanocomposites were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectra, and transmission electron microscopy (TEM) techniques. The enhanced thermal stability of PVC/TDI-modified LDH nanocomposites was confirmed by means of conventional Congo Red test and dynamic thermogravimetric analysis (TGA). In addition, the thermal degradation mechanism was briefly discussed on the basis of the above experimental results.  相似文献   

11.
Solid films of cube-like polyaniline synthesized by inverse microemulsion polymerization method have been fabricated in a transparent PMMA host by an in situ free radical polymerization technique, and are characterized by spectroscopic and microscopic techniques. The nonlinear optical properties are studied by open aperture Z-scan technique employing 5 ns (532 nm) and 100 fs (800 nm) laser pulses. At the relatively lower laser pulse energy of 5 μJ, the film shows saturable absorption both in the nanosecond and femtosecond excitation domains. An interesting switchover from saturable absorption to reverse saturable absorption is observed at 532 nm when the energy of the nanosecond laser pulses is increased. The nonlinear absorption coefficient increases with increase in polyaniline concentration, with low optical limiting threshold, as required for a good optical limiter.  相似文献   

12.
Nylon-66 contains functional groups which form hydrogen bonds with inorganic silica networks and allow the creation of hybrid membranes. As a typical semicrystalline polymer, nylon-66 can be crosslinked through electron beam (EB) irradiation to form nanofiltration membranes. The effects of γ-aminopropyltriethoxylsilane (APTEOS) and EB irradiation on the physical and separation properties of nylon-66 membranes were studied in this work. Hybrid nylon-66 membranes were prepared by adding an APTEOS solution (5 wt%, 10 wt% and 20 wt%) into nylon-66 which was dissolved in formic acid. Before air drying, membranes were irradiated at 60 kGy, 70 kGy and 80 kGy. More cellular pores were formed in nylon-66 membranes with the addition of APTEOS. However, increased irradiation dose caused the formation of a dense layer in nylon-66 membranes. Crosslinked silica in nylon-66 membranes was confirmed by FT-IR and DMA, while XRD results showed that there was a high degree of crystallinity in some membranes after irradiation. With improvements in membrane pore size and the ratio of membrane thickness to porosity, nylon-66 membrane with 10 wt% of APTEOS irradiated at 70 kGy exhibited satisfactory permeability, excellent removal of neutral solutes and improved rejection of divalent ions.  相似文献   

13.
Nanocomposites with tunable coefficient of thermal expansion (CTE) were prepared by incorporating cubic zirconium tungstate (ZrW2O8) nanoparticles at various volume percentages in a polyimide (PI). Rod-shaped nanoparticles of cubic ZrW2O8, which has isotropic negative thermal expansion, were synthesized using a hydrothermal method. The interfacial interaction between the PI and ZrW2O8 was enhanced by covalently bonding different organic moieties, including a short aliphatic silane and PI oligomer, to the surface of ZrW2O8. Structure–property relationships for the PI–ZrW2O8 nanocomposites were investigated for thermal degradation, glass transition, tensile and thermal expansion properties. Addition of ZrW2O8 nanoparticles did not alter the thermal degradation and glass transition temperature of the base PI. The addition of ZrW2O8 nanoparticles increased the Young's modulus of the polymer, indicating stiffening of the polyimide matrix. The increase was higher for nanocomposites with engineered interfaces due to the efficient load transfer achieved through the presence of linker groups. The addition of ZrW2O8 reduced the in-plane CTE of the base PI at all loadings studied. The CTE of the base PI was reduced by around 22% with the addition of ZrW2O8 at 15 volume% loading.  相似文献   

14.
Graphite nanoplatelet (GNP)/rubbery epoxy composites were fabricated by mechanical mixer (MM) and dual asymmetric centrifuge speed mixer (SM). The properties of the GNP/rubbery epoxy were compared with GNP/glassy epoxy composites. The thermal conductivity of GNP/rubbery epoxy composite (25 wt.% GNP, particle size 15 μm) reached 2.35 W m−1 K−1 compared to 0.1795 W m−1 K−1 for rubbery epoxy. Compared with GNP/rubbery epoxy composite, at 20 wt.%, GNP/glassy epoxy composite has a slightly lower thermal conductivity but an electrical conductivity that is 3 orders of magnitude higher. The viscosity of rubbery epoxy is 4 times lower than that of glassy epoxy and thus allows higher loading. The thermal and electrical conductivities of composites produced by MM are slightly higher than those produced by SM due to greater shearing of GNPs in MM, which results in better dispersed GNPs. Compression and hardness testing showed that GNPs increase the compressive strength of rubbery epoxy ∼2 times without significantly affecting the compressive strain and hardness. The GNP/glassy epoxy composites are 40 times stiffer than the GNP/rubbery epoxy composites. GNP/rubbery epoxy composites with their high thermal conductivity, low electrical conductivity, low viscosity before curing and high conformability are promising thermal interface materials.  相似文献   

15.
16.
Thin-film poly(styrene-block-methyl methacrylate) diblock copolymer (PS-b-PMMA) is used to create chemically patterned surfaces via metal deposition combined with self-assembled monolayers (SAMs) and UV exposure. We use this method to produce surfaces that are chemically striped on the scale of a few tens of nanometers. Atomic force and transmission electron microscopies are used to verify the spatially localized organization of materials, and contact angle measurements confirm the chemical tunability of these scaffolds. These surfaces may be used for arraying nanoscale objects, such as nanoparticles or biological species, or for electronic, magnetic memory or photovoltaic applications.  相似文献   

17.
In this study both aligned and randomly oriented poly(d,l-lactide-co-glycolide) (PLGA)/chitosan nanofibrous scaffold have been prepared by electrospinning. The ratio of PLGA to chitosan was adjusted to get smooth nanofiber surface. Morphological characterization using scanning electron microscopy showed that the aligned nanofiber diameter distribution obtained by electrospinning of polymer blend increased with the increase of chitosan content which was similar to that of randomly oriented nanofibers. The release characteristic of model drug fenbufen (FBF) from the FBF-loaded aligned and randomly oriented PLGA and PLGA/chitosan nanofibrous scaffolds was investigated. The drug release rate increased with the increase of chitosan content because the addition of chitosan enhanced the hydrophilicity of the PLGA/chitosan composite scaffold. Moreover, for the aligned PLGA/chitosan nanofibrous scaffold the release rate was lower than that of randomly oriented PLGA/chitosan nanofibrous scaffold, which indicated that the nanofiber arrangement would influence the release behavior. In addition, crosslinking in glutaraldehyde vapor would decrease the burst release of FBF from FBF-loaded PLGA/chitosan nanofibrous scaffold with a PLGA/chitosan ratio less than 9/1, which would be beneficial for drug release.  相似文献   

18.
A red-emitting silicon fluoride acrylate (SFA)-Eu(III) copolymer was prepared based on water-in-oil emulsion polymerization method. Its photoluminescence including the temporal decay was studied in addition to the thermal properties. Of the emissions due to the 5D0 → 7FJ (J = 0–4) transitions of Eu3+ ions, an intense red emission due to 5D0 → 7F2 transition was observed at 618 nm under the 395 nm excitation, together with a weak 5D0 → 7F0 emission at 580 nm. Compared with some commercial phosphor, the SFA-Eu(III) copolymer also have a higher QE value. From the optical properties it was suggested that Eu3+ ions were located at the disordered non-inversion Eu3+ sites in the copolymer. The glass transition temperature (Tg) was estimated about −51.5 °C from a differential scanning calorimetric curve, while chemical decomposition was estimated to start from 385 °C from a thermogravimetry analysis curve. Taking into account the thermal stability in a wide temperature range from −51.5 °C to 385 °C, the SFA-Eu(III) copolymer is expected to act as a potential red component for near-UV excited white LEDs.  相似文献   

19.
In this paper, nano-sized Mg–Al layered double hydroxide (LDH) was synthesized by a fast nucleation and slow aging method. The structures of LDH were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and photon correlation spectroscopy (PCS). Poly(vinyl alcohol) (PVA) nanocomposites with different LDH loadings were prepared by water solution casting method. TEM observations show that the LDH nanoplatelets are uniformly dispersed in the PVA matrix. Tensile tests indicate that the elastic modulus and the tensile strength of PVA are improved by about 15% and 54%, respectively, when incorporating with 2 wt% LDH. The improvement of mechanical properties of PVA can be attributed to fine dispersion of LDH, good compatibility and strong interaction between PVA and LDH. In addition, the presence of LDH decreases the decomposition rates at the second stage and improves the amount of residues of PVA. Meanwhile, the transparency of the nanocomposite films is maintained compared with neat PVA.  相似文献   

20.
Conductive immiscible multiphase blends of PMMA/LDPE filled with carbon black (CB) were studied in this work. Thermo-electrical behavior of the blends was compared with the composites made up of individual polymers in the blend, PMMA and LDPE filled with CB. The conductivity of the immiscible binary blend at different CB content was followed and modeled using a model circuit in which resistors resembling different phases and the interface between them present in the blend. Electrical percolation threshold was measured for the blend and compared with the single component polymers in order to judge the preferred phase for CB distribution in it. Rheological network formation by CB particles in the blend was also studied using dynamic rheology. The effect of CB loading on the morphology of the multiphase blend was also studied using FESEM images. Theoretical models were also used to predict the percolation thresholds for electrical and rheological network formation and compared with the experimental values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号