首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nano-sized FeFe2O4 ferrite powder having a heat generation ability in an AC magnetic field was prepared by bead milling for a thermal coagulation therapy application. A commercial powder sample (non-milled sample) of ca. 2.0 μm in particle size showed a temperature enhancement (ΔT) of 3 °C in an AC magnetic field (powder weight 1.0 g, 370 kHz, 1.77 kA m−1) in ambient air. The heat generation ability in the AC magnetic field improved with the milling time, i.e., due to a decrease in the average crystallite size for all the examined ferrites. The highest heat ability (ΔT = 26 °C) in the AC magnetic field in ambient air was for the fine FeFe2O4 powder with a 4.7 nm crystallite size (the samples were milled for 6 h using 0.1 mm? beads). However, the heat generation ability decreased for the excessively milled FeFe2O4 samples having average crystallite sizes of less than ca. 4.0 nm. The heat generation of the samples showed some dependence on the hysteresis loss for the BH magnetic property. The reasons for the high heat generation properties of the milled samples would be ascribed to an increase in the Néel relaxation of the superparamagnetic material. The hysteresis loss in the BH magnetic curve would be generated as the magnetic moment rotates (Néel relaxation) within the crystal. The heat generation ability (W g−1) can be estimated using a 1.07 × 10−4fH2 frequency (f, kHz) and the magnetic field (H, kA m−1) for the samples milled for 6 h using 0.1 mm? beads. Moreover, an improvement in the heating ability was obtained by calcination of the bead-milled sample at low temperature. The maximum heat generation (ΔT = 59 °C) ability in the AC magnetic field in ambient air was obtained at ca. 5.6 nm for the sample calcined at 500 °C. The heat generation ability (W g−1) for this heat treated sample was 2.54 × 10−4fH2.  相似文献   

2.
Samples of TiO2, calcined at 100 °C (type 1) and 200 °C (type 2), have been prepared without and with water rinsing. The crystallite sizes determined by XRD method were smaller than 15 nm for both types of samples. Magnetic resonance spectra of the obtained samples have been studied in 230-300 K temperature range. Before rinsing no magnetic spectra were observed but after rinsing the magnetic response appeared in form of a resonance line centered at geff ∼ 2.54 with linewidth ΔHpp ∼ 460 G in type 1 samples and geff ∼ 2.26 with linewidth ΔHpp ∼ 220 G in type 2 samples. The integrated intensity of the observed spectrum was two times greater in the type 1 sample. The resonance line could be attributed to the localized magnetic moments in the correlated spin system formed during rinsing. The rinsing resulted also in higher photocatalytic properties under UV-VIS irradiation. It is suggested that the number of oxygen vacancies increases after rinsing and as they are involved in the formation of low oxidation states of titanium ions, they could be responsible for the appearance of the observed magnetic properties.  相似文献   

3.
A simple CTAB-assisted sol-gel technique for synthesizing nano-sized Li4Ti5O12 with promising electrochemical performance as anode material for lithium ion battery is reported. The structural and morphological properties are investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The electrochemical performance of both samples (with and without CTAB) calcined at 800 °C is evaluated using Swagelok™ cells by galvanostatic charge/discharge cycling at room temperature. The XRD pattern for sample prepared in presence of CTAB and calcined at 800 °C shows high-purity cubic-spinel Li4Ti5O12 phase (JCPDS # 26-1198). Nanosized-Li4Ti5O12 calcined at 800 °C in presence of CTAB exhibits promising cycling performance with initial discharge capacity of 174 mAh g−1 (∼100% of theoretical capacity) and sustains a capacity value of 164 mAh g−1 beyond 30 cycles. By contrast, the sample prepared in absence of CTAB under identical reaction conditions exhibits initial discharge capacity of 140 mAh g−1 (80% of theoretical capacity) that fades to 110 mAh g−1 after 30 cycles.  相似文献   

4.
The purpose of this research was to synthesize and characterize gold-coated Fe3O4/SiO2 nanoshells for biomedical applications. Magnetite nanoparticles (NPs) were prepared using co-precipitation method. Smaller particles were synthesized by decreasing the NaOH concentration, which in our case this corresponded to 35 nm using 0.9 M of NaOH at 750 rpm with a specific surface area of 41 m2 g−1. For uncoated Fe3O4 NPs, the results showed an octahedral geometry with saturation magnetization range of 80–100 emu g−1 and coercivity of 80–120 Oe for particles between 35 and 96 nm, respectively. The magnetic NPs were modified with a thin layer of silica using Stober method. Small gold colloids (1–3 nm) were synthesized using Duff method and covered the amino functionalized particle surface. Magnetic and optical properties of gold nanoshells were assessed using Brunauer–Emmett–Teller (BET), vibrating sample magnetometer (VSM), UV–Vis spectrophotometer, atomic and magnetic force microscope (AFM, MFM), and transmission electron microscope (TEM). Based on the X-ray diffraction (XRD) results, three main peaks of Au (1 1 1), (2 0 0) and (2 2 0) were identified. The formation of each layer of a nanoshell is also demonstrated by Fourier transform infrared (FTIR) results. The Fe3O4/SiO2/Au nanostructures, with 85 nm as particle size, exhibited an absorption peak at ∼550 nm with a magnetization value of 1.3 emu g−1 with a specific surface area of 71 m2 g−1.  相似文献   

5.
Well dispersed Fe3O4 nanoparticles with mean size about 160 nm are synthesized by a simple chemical method at atmosphere pressure. The products are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and Raman spectrum. Electrochemical properties of the as-synthesized Fe3O4 nanoparticles as anode electrodes of lithium ion batteries are studied by conventional charge/discharge tests, showing initial discharge and charge capacities of 1140 mAh g−1 and 1038 mAh g−1 at a current density of 0.1 mA cm−2. The charge and discharge capacities of Fe3O4 electrode decrease along with the increase of cycle number, arriving at minimum values near the 70th cycle. After that, the discharge and charge capacities of Fe3O4 electrode begin to increase along with the increase of cycle number, arriving at 791 and 799 mAh g−1 after 393 cycles. The morphology and size of the electrode after charge and discharge tests are characterized by SEM, which exhibits a large number of dispersive particles with mean size about 150 nm.  相似文献   

6.
Na0.5Bi0.5Cu3Ti4O12 (NBCTO) ceramics were prepared by conventional solid-state reaction method. The phase structure, microstructure and dielectric properties of NBCTO ceramics sintered at various temperatures with different soaking time were investigated. Pure NBCTO phase could be obtained with increasing the temperature and prolonging the soaking time. High dielectric permittivity (13,495) and low dielectric loss (0.031) could be obtained when the ceramics were sintered at 1000 °C for 7.5 h. The ceramics sintered at 1000 °C for 7.5 h also showed good temperature stability (−4.00 to −0.69%) over a large temperature range from −50 to 150 °C. Complex impedances results revealed that the grain was semiconducting and the grain boundaries was insulating. The grain resistance (Rg) was 12.10 Ω cm and the grain boundary resistance (Rgb) was 2.009 × 105 Ω cm when the ceramics were sintered at 1000 °C for 7.5 h.  相似文献   

7.
Oxalyldihydrazide as a fuel was used to prepare new nano size blue refractory ceramic pigments MgAl2O4: xCo2+ (0.00 ≤ x ≤ 0.10) using low temperature combustion synthesis (LCS) method. The synthesized and calcined powders were characterized by Fourier transform infra red (FTIR) spectrometry, electronic spectra, thermogravimetry, differential thermogravimetry, differential thermal analysis, X-ray diffraction (XRD) analysis, and transmission electron microscopy (TEM). Also, the color measurements of nano pigments are studied by diffuse reflectance spectroscopy (DRS) using CIE-L*a*b* parameter method. The FTIR spectra show frequency bands in range the 422–700 cm−1 correspond to metal oxygen bonds through vibrations for the spinel structure compound. The average particle size of prepared samples as determined from XRD and TEM was 30 nm at 1100 °C. Also, the results revealed the varying bulk density, particle size, shape and color with different calcination times and temperatures.  相似文献   

8.
The three-dimensional hybrid compound Ni3(C4H4N2)3(V8O23) has been synthesized by mild hydrothermal methods under autogenous pressure at 170 °C. The structure of the phase is stable until 380 °C. The removal of the pyrazine molecules from the structure induces its collapse. The IR spectrum shows the vibration modes of the pyrazine molecule and those of the [VO4]3− groups. A UV-visible spectrum shows the characteristic bands of the Ni(II) d8-high-spin cation in a slightly distorted octahedral coordination. Magnetic measurements indicate the existence of antiferromagnetic interactions that can be fitted with a chain model to give g = 2.31, J/k = −5.3, and zJ′/k = −5.5.  相似文献   

9.
Microwave dielectric ceramics in the Sr1−xCaxLa4Ti5O17 (0 ≤ x ≤ 1) composition series were prepared through a solid state mixed oxide route. All the compositions formed single phase ceramics within the detection limit of in-house X-ray diffraction when sintered in the temperature range 1450-1580 °C. Theoretical density and molar volume decreased due to the substitution of Ca2+ for Sr2+ which was associated with a decrease in the dielectric constant (?r) and temperature coefficient of resonant frequency (τf) but an increase in quality factor, Qfo. Optimum properties were achieved for Sr0.4Ca0.6La4Ti5O17 which exhibited, ?r ∼ 53.7, Qfo ∼ 11,532 GHz and τf ∼ −1.4 ppm/°C.  相似文献   

10.
Differential scanning calorimetry (DSC), infrared (IR) and direct current (DC) conductivity studies have been carried out on (100 − 2x)TeO2-xAg2O-xWO3 (7.5 ≤ x ≤ 30) glass system. The IR studies show that the structure of glass network consists of [TeO4], [TeO3]/[TeO3+1], [WO4] units. Thermal properties such as the glass transition (Tg), onset crystallization (To), thermal stability (ΔT), glass transition width (ΔTg), heat capacities in the glassy and liquid state (Cpg and Cpl), heat capacity change (ΔCp) and ratios Cpl/Cpg of the glass systems were calculated. The highest thermal stability (237 °C) obtained in 55TeO2-22.5Ag2O-22.5WO3 glass suggests that this new glass may be a potentially useful candidate material host for rare earth doped optical fibers. The DC conductivity of glasses was measured in temperature region 27-260 °C, the activation energy (Eact) values varied from 1.393 to 0.272 eV and for the temperature interval 170-260 °C, the values of conductivity (σ) of glasses varied from 8.79 × 10−9 to 1.47 × 10−6 S cm−1.  相似文献   

11.
In this paper, a series of pure Ni1 − xZnxFe2O4 (0 ≤ x ≤ 1) spinel ferrites have been synthesized successfully using a novel route through calcination of tailored hydrotalcite-like layered double hydroxide molecular precursors of the type [(Ni + Zn)1 − x − yFey2+Fex3+(OH)2]x+(SO42−)x/2·mH2O at 900 °C for 2 h, in which the molar ratio of (Ni2+ + Zn2+)/(Fe2+ + Fe3+) was adjusted to the same value as that in single spinel ferrite itself. The physico-chemical characteristics of the LDHs and their resulting calcined products were investigated by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and Mössbauer spectroscopy. The results indicate that calcination of the as-synthesized LDH precursor affords a pure single Ni1 − xZnxFe2O4 (0 ≤ x ≤ 1) spinel ferrite phase. Moreover, formation of pure ferrites starting from LDHs precursors requires a much lower temperature and shorter time, leading to a lower chance of side-reactions occurring, because all metal cations on the brucite-like layers of LDHs can be uniformly distributed at an atomic level.  相似文献   

12.
A novel kind of perovskite type oxide KNd2Ti3O9.5 nanocrystals with an average size of 12 nm were successfully fabricated by a stearic acid sol–gel method (SAM) using Ti(OBu)4, KOH, Nd2O3 and stearic acid as the raw materials. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the products. The catalytic effect of the KNd2Ti3O9.5 nanoparticles on thermal decomposition of ammonium perchlorate (AP) was investigated by differential thermal analysis (DTA) and thermal gravimetry (TG) experiments. Results indicated that the obtained KNd2Ti3O9.5 nanocrystals took on cubic structure and presented both good dispersibility and uniform crystallite size. Also, they have an intense catalytic effect on the thermal decomposition of AP. Adding 2% of KNd2Ti3O9.5 nanoparticles to AP can obviously decrease the thermal decomposition temperature of AP by 50 °C, increase the heat of decomposition from 590 J g−1 to 1659 J g−1 and obviously quicken the decomposition reaction rate.  相似文献   

13.
Nanocrystalline LiMn2O4 powders have been synthesized by combustion process in a single step using a novel fuel, l-alanine. Thermogravimetric analysis and differential thermal analysis of the gel indicate a sharp combustion at a temperature as low as 149 °C. Quantitative phase analysis of X-ray diffraction data shows about 97% of phase purity in the as-synthesized powder, which on further calcination at 700 °C becomes single phase LiMn2O4. High Brunauer, Emmett, and Teller surface area values obtained for ash (53 m2/g) and calcined powder (23 m2/g) indicate the ultrafine nature of the powder. Average crystallite size is found to be ∼60-70 nm from X-ray diffraction analysis and transmission electron microscopy. Fourier transformed infra-red spectrum shows two strong bands at 615 and 511 cm−1 originating from asymmetrical stretching of MnO6 octahedra. A nominal composition of Li0.88 Mn2O4 is calculated from the inductive coupled plasma analysis. From UV-vis spectroscopy, an optical band gap of 1.43 eV is estimated which is assigned to a transition between t2g and eg bands of Mn 3d. Electrochemical charge-discharge profiles show typical LiMn2O4 behavior with a specific capacity of 76 mAh/g.  相似文献   

14.
We describe the synthesis and characterization of new intergrowth Aurivillius related phases, Bi4LnNb3O15 (Ln = La, Pr, Nd) and Bi4LaTa3O15. Both powder X-ray diffraction and electron microscopy investigations show that the compounds adopt orthorhombic structures with the cell parameters a ∼ 5.5 Å, b ∼ 5.5 Å and c ∼ 20.9 Å, suggesting an ordered intergrowth structure that consists of n = 1 [Bi2NbO6] and n = 2 [Bi2LnNb2O9]+ Aurivillius fragments which are stacked alternately along the c-axis. The oxides do not show a second harmonic generation (SHG) response toward 1064 nm laser radiation; they do not show a ferroelectric-paraelectric transition either between 30 and 900 °C in dielectric measurements, indicating a centrosymmetric structure. Optical absorption studies show that the intergrowth phases possess considerably smaller band gaps than the parent Nb2O5 and Ta2O5.  相似文献   

15.
The role of GB in Mg-substituted lanthanum-strontium manganite ceramics is studied with microstructural details. At higher concentrations of Mg (x>0.05), where the average grain size is ∼1 μm, the M-I transition is shifted from 348 to 110 K. Annealing in lower pO2 (10−6 atm) at 1375 K for 1 h obliterates the M-I transition and brings in insulating behaviour throughout the temperature of measurement. Re-annealing in oxygen atmosphere for 10-25 min reintroduces the M-I transition, indicating that the electrical transport properties depend on the chemical inhomogeneity introduced by the in- or out-diffusion of oxygen through the GB regions. Samples with larger grain size (∼35 μm) do not exhibit major modifications in electrical resistivity on annealing in different pO2. The insulating manganites display non-linear J-E characteristics below the magnetic transition temperature at electric field strengths <50 V/cm. The non-linear behaviour is explained on the basis of the inelastic tunnelling through the multiple localised states in the insulating GB regions. The external magnetic field lowers the voltage at which the non-linearity sets in. The tunnelling therefore may be not only through independent defect centres of oxygen vacancies (VO), but possibly from defect complexes such as Mn3+-VO or Mn2+-VO, where spin-dependent tunnelling can take place.  相似文献   

16.
La1−xSrxMnO3 (x=0.3) (LSM) nanoparticles were prepared by a sonication-assisted coprecipitation method. The coprecipitation reaction is carried out with ultrasound radiation. Lower sintering temperatures are required for the sonication-assisted product. Fully crystallized LSM with an average particle size 24 nm is obtained after the as-prepared mixture is annealed at 900 °C for 2 h. Magnetic properties indicate that the transition temperature from the paramagnetic to ferromagnetic state of the sample is quite sharp and occurs at 366 K for samples annealed for 2 h at 900 and 1100 °C.  相似文献   

17.
A series of La1−xSbxFeO3 was prepared using the conventional solid state method. XRD revealed the formation of the orthorhombic structure with space group Pbnm. The data showed that, the molar magnetic susceptibility and coercive field HC were increased from 9.16 × 10−3 to 26.9 × 10−3 emu g−1 mol and 1196 to 5465 Oe from for LaFeO3 to La0.95Sb0.05FeO3, respectively. The coercive field (HC) of the sample with x = 0.05 increased 6 times than that of the parent LaFeO3 and the saturation magnetization (Ms) was increased from 0.1614 emu g−1 for the parent LaFeO3 to 0.2654 emu g−1 for the doped sample. The dielectric constant (?′) was increased with increasing the Sb3+ content. The ac conductivity (σ) increases from 2.36 × 10−3 Ω−1 m−1 for the LaFeO3 to 30 × 10−3 Ω−1 m−1 for the sample La0.95Sb0.05FeO3 at T = 553 K and frequency 1 MHz. The sample La0.95Sb0.05FeO3 is concluded to be a novel single phase multiferroic material.  相似文献   

18.
(1 − x) (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3 − x BiFeO3 (x = 0, 0.002, 0.004, 0.006, 0.008, 0.01) lead-free piezoelectric ceramics were prepared by the conventional ceramic processing. The compositional dependence of the phase structure and the electrical properties of the ceramics were studied. A morphotropic phase boundary between the orthorhombic and tetragonal phases was identified in the composition range of 0.004 < x < 0.006. The ceramics near the morphotropic phase boundary exhibit a strong compositional dependence and enhanced piezoelectric properties. The ceramics with 0.6 mol.% BiFeO3 exhibit good electrical properties (d33 ∼ 246 pC/N, kp ∼ 43%, Tc ∼ 285 °C, ?r ∼ 1871, and tan δ ∼ 1.96%). These results show that the (1 − x) (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3 − x BiFeO3 ceramic is a promising lead-free piezoelectric material for applications in different devices.  相似文献   

19.
Nanocrystalline particles of La1−xSrxCrO3 (0.000 ≤ x ≤ 0.020) compounds were synthesized in order to investigate the antiferromagnetic (AFM) to paramagnetic (PM) phase transition temperature, g-factor, line width and intensity by electron paramagnetic resonance (EPR). All samples were synthesized by combustion reaction method using strontium nitrate, lanthanum nitrate, chromium nitrate and urea as fuel without subsequent heat treatment. X-ray diffraction patterns of all systems showed broad peaks consistent with orthorhombic structure of LaCrO3. The absence of extra reflections in the diffraction patterns of as-prepared materials ensures the phase purity. The average crystallite sizes determined from the prominent (1 1 2) peak of the diffraction using Scherrer's equation was independent of the addition of Sr2+ ions; being ca. 31–29 nm for x = 0.000 and 0.020, respectively. The EPR line width and intensity were found to be dependent on Sr2+ addition and temperature. However, the AFM–PM transition temperature was found to be independent of strontium concentration, being ca. 296 K. In the PM phase, g-factor was nearly temperature independent with increasing of x. The EPR results indicated that the addition of Sr2+ ions may induce creation of Cr3+–Cr4+ clusters.  相似文献   

20.
The microstructures and the microwave dielectric properties of the (1 − x)Mg4Nb2O9-xCaTiO3 ceramic system were investigated. In order to achieve a temperature-stable material, CaTiO3 (τf ∼ 800 ppm/°C) was chosen as a τf compensator and added to Mg4Nb2O9 (τf ∼ −70 ppm/°C) to form a two phase system. It was confirmed by the XRD and EDX analysis. By appropriately adjusting the x-value in the (1 − x)Mg4Nb2O9-xCaTiO3 ceramic system, near-zero τf value can be achieved. A new microwave dielectric material, 0.5Mg4Nb2O9-0.5CaTiO3 applicable in microwave devices is suggested and possesses the dielectric properties of a dielectric constant ?r ∼ 24.8, a Q × f value ∼82,000 GHz (measured at 9.1 GHz) and a τf value ∼−0.3 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号