首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work we study the capacity of storage hydrogen on carbon fibers activated with supercritical water and with steam on the basis of a multisite Langmuir model, with three energetically different adsorption sites that may be associated with pores of different sizes: i) very small micropores, accessible only to hydrogen; ii) micropores detected by the adsorption of CO2, and iii) micropores detected by the adsorption of N2. The correlation of the experimental data with the model allowed the amount of hydrogen stored in each of the sites to be quantified and confirmed that hydrogen storage mechanism begins with the filling of the smallest pores. Additionally, from the model it was possible to interpret the dependence of the amount of hydrogen stored with textural parameters such as the micropore volumes. The model also allowed the storage capacity of the fibers to be predicted for pressures higher than those obtained experimentally.  相似文献   

2.
The effect of CO2 reactivity on CH4 oxidation and H2 formation in fuel-rich O2/CO2 combustion where the concentrations of reactants were high was studied by a CH4 flat flame experiment, detailed chemical analysis, and a pulverized coal combustion experiment. In the CH4 flat flame experiment, the residual CH4 and formed H2 in fuel-rich O2/CO2 combustion were significantly lower than those formed in air combustion, whereas the amount of CO formed in fuel-rich O2/CO2 combustion was noticeably higher than that in air. In addition to this experiment, calculations were performed using CHEMKIN-PRO. They generally agreed with the experimental results and showed that CO2 reactivity, mainly expressed by the reaction CO2 + H → CO + OH (R1), caused the differences between air and O2/CO2 combustion under fuel-rich condition. R1 was able to advance without oxygen. And, OH radicals were more active than H radicals in the hydrocarbon oxidation in the specific temperature range. It was shown that the role of CO2 was to advance CH4 oxidation during fuel-rich O2/CO2 combustion. Under fuel-rich combustion, H2 was mainly produced when the hydrocarbon reacted with H radicals. However, the hydrocarbon also reacted with the OH radicals, leading to H2O production. In fact, these hydrocarbon reactions were competitive. With increasing H/OH ratio, H2 formed more easily; however, CO2 reactivity reduced the H/OH ratio by converting H to OH. Moreover, the OH radicals reacted with H2, whereas the H radicals did not reduce H2. It was shown that OH radicals formed by CO2 reactivity were not suitable for H2 formation. As for pulverized coal combustion, the tendencies of CH4, CO, and H2 formation in pulverized coal combustion were almost the same as those in the CH4 flat flame.  相似文献   

3.
During 2006, a survey was conducted of European energy stakeholders (industry, government, environmental non-governmental organizations (NGOs), researchers and academicians and parliamentarians). A total of 512 responses was received from 28 countries as follows: industry (28%), research (34%), government (13%), NGOs (5%) and parliamentarians (4%). Three-quarters of the sample thought that widespread use of CO2 capture and storage (CCS) was ‘definitely’ or ‘probably necessary’ to achieve deep reductions in CO2 emissions between now and 2050 in their own country. Only one in eight considered that CCS was ‘probably’ or ‘definitely not necessary’. For a range of 12 identified risks, 20–40% thought that they would be ‘moderate’ or ‘very serious’, whilst 60–80% thought that there would be no risks or that the risks would be ‘minimal’. A particular risk identified by nearly half the sample is the additional use of fossil fuels due to the ‘energy penalty’ incurred by CCS. Further concerns are that development of CCS would detract from investment in renewable energy technologies. Half of the respondents thought that incentives for CCS should be set either at the same level as those for renewables or at a higher level. Environmental NGOs were consistently less enthusiastic about CCS than the energy industry.  相似文献   

4.
CO2 emissions in the atmosphere are increasing continually, which are mainly originated from burning of fossil fuels. The fossil fuels are expected to remain a major component of the world’s energy supply in the near future, because of their inherent advantages. Therefore, various measures have to be considered to reduce anthropogenic CO2 emissions. Increasing the efficiency of energy usage and/or developing lower carbon or non-carbon energies to replace high carbon fuels may bring the result of the reduction of the accumulation of CO2 in the atmosphere. The other alternative to reduce CO2 concentrations in atmosphere include gaseous storage in various deep geological formations, liquid storage in the ocean, and solid storage by reaction of CO2 with metal oxides to produce stable carbonates. In this article, the geological storage options of CO2 are examined. They are discussed in terms of applicability, cost, storage capacity and safety.  相似文献   

5.
A solar energy powered Rankine cycle using supercritical CO2 for combined production of electricity and thermal energy is proposed. The proposed system consists of evacuated solar collectors, power generating turbine, high-temperature heat recovery system, low-temperature heat recovery system, and feed pump. The system utilizes evacuated solar collectors to convert CO2 into high-temperature supercritical state, used to drive a turbine and thereby produce mechanical energy and hence electricity. The system also recovers heat (high-temperature heat and low-temperature heat), which could be used for refrigeration, air conditioning, hot water supply, etc. in domestic or commercial buildings. An experimental prototype has been designed and constructed. The prototype system has been tested under typical summer conditions in Kyoto, Japan; It was found that CO2 is efficiently converted into high-temperature supercritical state, of while electricity and hot water can be generated. The experimental results show that the solar energy powered Rankine cycle using CO2 works stably in a trans-critical region. The estimated power generation efficiency is 0.25 and heat recovery efficiency is 0.65. This study shows the potential of the application of the solar-powered Rankine cycle using supercritical CO2.  相似文献   

6.
A quarter-century ago, one of us termed the use of nuclear energy a Faustian Bargain. In this paper, we discuss what a Faustian Bargain means, how the expression has been used in characterizing other technologies, and in what measure CO2 capture and storage is a Faustian Bargain. If we are about to enter into another Faustian Bargain, we should understand the contract.  相似文献   

7.
CO2 capture and storage (CCS) is not currently a priority for the Government of India (GOI) because, whilst a signatory to the UNFCCC and Kyoto Protocol, there are no existing greenhouse gas emission reduction targets and most commentators do not envisage compulsory targets for India in the post-2012 phase. The overwhelming priority for the GOI is to sustain a high level of economic growth (8%+) and provision of secure, reliable energy (especially electricity) is one of the widely recognised bottlenecks in maintaining a high growth rate. In such a supply-starved context, it is not easy to envisage adoption of CCS—which increases overall generation capacity and demand for coal without increasing actual electricity supply—as being acceptable. Anything which increases costs—even slightly—is very unlikely to happen, unless it is fully paid for by the international community. The majority viewpoint of the industry and GOI interviewees towards CCS appears to be that it is a frontier technology, which needs to be developed further in the Annex-1 countries to bring down the cost through RD&D and deployment. More RD&D is required to assess in further detail the potential for CO2 storage in geological reservoirs in India and the international community has an important role to play in cultivating such research.  相似文献   

8.
To explore public awareness of carbon capture and storage (CCS), attitudes towards the use of CCS and the determinants of CCS acceptance in China, a study was conducted in July 2009 based on face-to-face interviews with participants across the country. The result showed that the awareness of CCS was low among the surveyed public in China, compared to other clean energy technologies. Respondents indicated a slightly supportive attitude towards the use of CCS as an alternative technology to CO2 emission reductions. The regression model revealed that in addition to CCS knowledge, respondents’ understanding of the characteristics of CCS, such as the maturity of the technology, risks, capability of CO2 emission reductions, and CCS policy were all significant factors in predicting the acceptance of CCS. The findings suggest that integrating public education and communication into CCS development policy would be an effective strategy to overcome the barrier of low public acceptance.  相似文献   

9.
Carbon dioxide (CO2) capture and storage has the potential to reduce CO2 emissions from fossil fuel combustion. Although leakage from monitored CO2 injection sites has been minimal to non-existent, experience from the natural gas storage industry suggests that, if it becomes a widely deployed technology, leaks may be expected from some storage sites. Natural occurrences of CO2 in the geosphere, some of which have been exploited, provide insights into the types of emissions that might be expected from anthropogenic CO2 storage sites. CO2 emission sites are commonly found in clusters in CO2-prone geological provinces: the most common natural emissions sites in sedimentary basins consist of carbonated springs and mofettes. These represent at worst only a local hazard. In volcanic and hydrothermal provinces, more energetic emissions may occur due to active supply from degassing magma. These include rare, sudden emissions from fissures and craters that have caused fatalities. It is unlikely that such provinces would be considered for CO2 storage Major lake overturn events such as occurred at Lake Nyos in 1986 are considered highly unlikely to occur as a result of CO2 storage, not least because CO2 levels in lake waters can be monitored and remediated. Natural CO2 fields indicate that under favourable conditions CO2 can be retained in the subsurface for millions of years. The main risk from man-made CO2 storage sites that does not have any close analogy in nature is considered to be a well blowout. A blowout that took place at a natural CO2 field provides some indication of the likely hazard.  相似文献   

10.
An experimental study is carried out to investigate the performance of a solar Rankine system using supercritical CO2 as a working fluid. The testing machine of the solar Rankine system consists of an evacuated solar collector, a pressure relief valve, heat exchangers and CO2 feed pump, etc. The solar energy powered system can provide electricity output as well as heat supply/refrigeration, etc. The system performance is evaluated based on daily, monthly and yearly experiment data. The results obtained show that heat collection efficiency for the CO2-based solar collector is measured at 65.0–70.0%. The power generation efficiency is found at 8.78–9.45%, which is higher than the value 8.20% of a solar cell. The result presents a potential future for the solar powered CO2 Rankine system to be used as distributed energy supply system for buildings or others.  相似文献   

11.
The knowledge about pressure–volume–temperature–composition (PVTxy) properties plays an important role in the design and operation of many processes involved in CO2 capture and storage (CCS) systems. A literature survey was conducted on both the available experimental data and the theoretical models associated with the thermodynamic properties of CO2 mixtures within the operation window of CCS. Some gaps were identified between available experimental data and requirements of the system design and operation. The major concerns are: for the vapour–liquid equilibrium, there are no data about CO2/COS and few data about the CO2/N2O4 mixture. For the volume property, there are no published experimental data for CO2/O2, CO2/CO, CO2/N2O4, CO2/COS and CO2/NH3 and the liquid volume of CO2/H2. The experimental data available for multi-component CO2 mixtures are also scarce. Many equations of state are available for thermodynamic calculations of CO2 mixtures. The cubic equations of state have the simplest structure and are capable of giving reasonable results for the PVTxy properties. More complex equations of state such as Lee–Kesler, SAFT and GERG typically give better results for the volume property, but not necessarily for the vapour–liquid equilibrium. None of the equations of state evaluated in the literature show any clear advantage in CCS applications for the calculation of all PVTxy properties. A reference equation of state for CCS should, thus, be a future goal.  相似文献   

12.
In this study, we estimate and analyze the CO2 mitigation costs of large-scale biomass-fired cogeneration technologies with CO2 capture and storage. The CO2 mitigation cost indicates the minimum economic incentive required (e.g. in the form of a carbon tax) to make the cost of a less carbon intensive system equal to the cost of a reference system. If carbon (as CO2) is captured from biomass-fired energy systems, the systems could in principle be negative CO2 emitting energy systems. CO2 capture and storage from energy systems however, leads to reduced energy efficiency, higher investment costs, and increased costs of end products compared with energy systems in which CO2 is vented. Here, we have analyzed biomass-fired cogeneration plants based on steam turbine technology (CHP-BST) and integrated gasification combined cycle technology (CHP-BIGCC). Three different scales were considered to analyze the scale effects. Logging residues was assumed as biomass feedstock. Two methods were used to estimate and compare the CO2 mitigation cost. In the first method, the cogenerated power was credited based on avoided power production in stand-alone plants and in the second method the same reference output was produced from all systems. Biomass-fired CHP-BIGCC with CO2 capture and storage was found very energy and emission efficient and cost competitive compared with other conversion systems.  相似文献   

13.
This paper studies the cost-effectiveness of combining traditional environmental policy, such as CO2-trading schemes, and technology policy that has aims of reducing the cost and speeding the adoption of CO2 abatement technology. For this purpose, we develop a dynamic general equilibrium model that captures empirical links between CO2 emissions associated with energy use, directed technical change and the economy. We specify CO2 capture and storage (CCS) as a discrete CO2 abatement technology. We find that combining CO2-trading schemes with an adoption subsidy is the most effective instrument to induce adoption of the CCS technology. Such a subsidy directly improves the competitiveness of the CCS technology by compensating for its markup over the cost of conventional electricity. Yet, introducing R&D subsidies throughout the entire economy leads to faster adoption of the CCS technology as well and in addition can be cost-effective in achieving the abatement target.  相似文献   

14.
In this work, CO2 capture and H2 production during the steam gasification of coal integrated with CO2 capture sorbent were investigated using a horizontal fixed bed reactor at atmospheric pressure. Four different temperatures (650, 675, 700, and 750 °C) and three sorbent-to-carbon ratios ([Ca]/[C] = 0, 1, 2) were studied. In the absence of sorbent, the maximum molar fraction of H2 (64.6%) and conversion of coal (71.3%) were exhibited at the highest temperature (750 °C). The experimental results verified that the presence of sorbent in the steam gasification of coal enhanced the molar fraction of H2 to more than 80%, with almost all CO2 was fixed into the sorbent structure, and carbon monoxide (CO) was converted to H2 and CO2 through the water gas shift reaction. The steam gasification of coal integrated with CO2 capture largely depended on the reaction temperature and exhibited optimal conditions at 675 °C. The maximum molar fraction of H2 (81.7%) and minimum CO2 concentration (almost 0%) were obtained at 675 °C and a sorbent-to-carbon ratio of 2.  相似文献   

15.
Hydrogen storage properties of carbon nanotubes (CNTs) modified by oxidative etching and decoration of Pd spillover catalysts are investigated. A mixed H2SO4/H2O2 solution containing ferrous ions (Fe2+) is useful to open the caps, to shorten the length, and to generate defects on CNTs. The Pd catalysts are deposited on the CNTs with the aid of supercritical carbon dioxide (scCO2); as a result, a highly dispersed Pd nanoparticles and an intimate connection between Pd and carbon surface can be obtained. Combination of the two approaches can optimize a hydrogen spillover reaction on CNTs, resulting in a superior hydrogen storage capacity of 1.54 wt% (at 25 °C and 6.89 MPa), which corresponds to an enhancement factor of ∼4.5 as compared to that of pristine CNTs.  相似文献   

16.
In this work a series of carbons with different structural and textural properties were characterised and evaluated for their application in hydrogen storage. The materials used were different types of commercial carbons: carbon fibers, carbon cloths, nanotubes, superactivated carbons, and synthetic carbons (carbon nanospheres and carbon xerogels). Their textural properties (i.e., surface area, pore size distribution, etc.) were related to their hydrogen adsorption capacities. These H2 storage capacities were evaluated by various methods (i.e., volumetric and gravimetric) at different temperatures and pressures. The differences between both methods at various operating conditions were evaluated and related to the textural properties of the carbon-based adsorbents. The results showed that temperature has a greater influence on the storage capacity of carbons than pressure. Furthermore, hydrogen storage capacity seems to be proportional to surface area, especially at 77 K. The micropore size distribution and the presence of narrow micropores also notably influence the H2 storage capacity of carbons. In contrast, morphological or structural characteristics have no influence on gravimetric storage capacity. If synthetic materials are used, the textural properties of carbon materials can be tailored for hydrogen storage. However, a larger pore volume would be needed in order to increase storage capacity. It seems very difficult approach to attain the DOE and EU targets only by physical adsorption on carbon materials. Chemical modification of carbons would seem to be a promising alternative approach in order to increase the capacities.  相似文献   

17.
H. Li  J. Yan   《Applied Energy》2009,86(12):2760-2770
Volume property is the necessary thermodynamic property in the design and operation of the CO2 capture and storage system (CCS). Because of their simple structures, cubic equations of state (EOS) are preferable to be applied in predicting volumes for engineering applications. This paper evaluates the reliabilities of seven cubic EOS, including PR, PT, RK, SRK, MPR, MSRK and ISRK for predicting volumes of binary CO2 mixtures containing CH4, H2S, SO2, Ar and N2, based on the comparisons with the collected experimental data. Results show that for calculations on the volume properties of binary CO2 mixtures, PR and PT are generally superior to others for all of the studied mixtures. In addition, it was found that the binary interaction parameter has clear effects on the calculating accuracy of an EOS in the volume calculations of CO2 mixtures. In order to improve the accuracy, kij was calibrated for all of the EOS regarding the gas and liquid phases of all the studied binary CO2 mixtures, respectively.  相似文献   

18.
In this study, we identify and characterize known and new environmental consequences associated with CO2 capture from power plants, transport by pipeline and storage in geological formations. We have reviewed (analogous) environmental impact assessment procedures and scientific literature on carbon capture and storage (CCS) options. Analogues include the construction of new power plants, transport of natural gas by pipelines, underground natural gas storage (UGS), natural gas production and enhanced oil recovery (EOR) projects. It is investigated whether crucial knowledge on environmental impacts is lacking that may postpone the implementation of CCS projects. This review shows that the capture of CO2 from power plants results in a change in the environmental profile of the power plant. This change encompasses both increase and reduction of key atmospheric emissions, being: NOx, SO2, NH3, particulate matter, Hg, HF and HCl. The largest trade-offs are found for the emission of NOx and NH3 when equipping power plants with post-combustion capture. Synergy is expected for SO2 emissions, which are low for all power plants with CO2 capture. An increase in water consumption ranging between 32% and 93% and an increase in waste and by-product creation with tens of kilotonnes annually is expected for a large-scale power plant (1 GWe), but exact flows and composition are uncertain. The cross-media effects of CO2 capture are found to be uncertain and to a large extent not quantified. For the assessment of the safety of CO2 transport by pipeline at high pressure an important knowledge gap is the absence of validated release and dispersion models for CO2 releases. We also highlight factors that result in some (not major) uncertainties when estimating the failure rates for CO2 pipelines. Furthermore, uniform CO2 exposure thresholds, detailed dose-response models and specific CO2 pipeline regulation are absent. Most gaps in environmental information regarding the CCS chain are identified and characterized for the risk assessment of the underground, non-engineered, part of the storage activity. This uncertainty is considered to be larger for aquifers than for hydrocarbon reservoirs. Failure rates are found to be heavily based on expert opinions and the dose-response models for ecosystems or target species are not yet developed. Integration and validation of various sub-models describing fate and transport of CO2 in various compartments of the geosphere is at an infant stage. In conclusion, it is not possible to execute a quantitative risk assessment for the non-engineered part of the storage activity with high confidence.  相似文献   

19.
This study was conducted to assess the economic feasibility of electricity generation from biogas in small pig farms with and without the H2S removal prior to biogas utilisation. The 2% potassium iodide (KI) impregnated activated carbon selected as H2S adsorbent was introduced to a biogas-to-electricity generation system in a small pig farm in Thailand as a case study. With the average inlet H2S concentration of about 2400 ppm to the adsorption unit, the H2S removal efficiency could reach 100% with the adsorption capacity of 0.062 kg of H2S/kg of adsorbent. Under the reference scenario (i.e., 45% subsidy on digester installation and fixed electricity price at 0.06 Euro/kWh) and based on an assumption that the biogas was fully utilised for electricity generation in the system, the payback period for the system without H2S removal was about 4 years. With H2S removal, the payback period was within the economic life of digester but almost twice that of the case without H2S removal. The impact of electricity price could be clearly seen for the case of treated biogas. At the electricity price fixed at 0.07 Euro/kWh, the payback period for the case of treated biogas was reduced to about 5.5 years, with a trend to decrease at higher electricity prices. For both treated and untreated biogas, the governmental subsidy was the important factor determining the economics of the biogas-to-electricity systems. Without subsidy, the payback period increased to almost 7 years and about 11 years for the case of untreated and treated biogas, respectively, at the reference electricity price. Although the H2S removal added high operation cost to the system, it is still highly recommended not only for preventing engine corrosion but also for the environment benefit in which air pollution by H2S/SO2 emission and impact on human health could be potentially reduced.  相似文献   

20.
This paper assesses the three leading technologies for capture of CO2 in power generation plants, i.e., post-combustion capture, pre-combustion capture and oxy-fuel combustion. Performance, cost and emissions data for coal and natural gas-fired power plants are presented, based on information from studies carried out recently for the IEA Greenhouse Gas R&D Programme by major engineering contractors and process licensors. Sensitivities to various potentially significant parameters are assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号