首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
碳纤维增强热塑性树脂基复合材料由于具有轻质、高强、加工周期短、可回收循环使用等优异性能逐渐受到航空航天、汽车工业等多个领域的关注,也成为未来复合材料增材制造的重要发展方向。本文以高性能热塑性树脂聚醚砜(PES)为基体,通过溶液浸渍-相转化法制备树脂含量可控,柔韧性好,有可能用于三维编织和自动铺放成型的热塑性预浸纱。将其经过热压成型制成单向带试样,与常用环氧树脂及其复合材料热性能和力学性能进行对比。研究发现PES基复合材料具有优异的耐热性能,其热分解温度(T_(5%))为576℃,800℃残碳率(N_2)为90%,其单向带纵向拉伸强度可达1781 MPa,拉伸模量为60.17 GPa,虽然略低于相同树脂含量的环氧树脂基复合材料,但PES基复合材料是一种很有发展潜力的高性能热塑性复合材料。  相似文献   

2.
用碳纤维1700增强杂萘联苯聚醚酮(PPFK)杂萘联苯聚醚砜(PPES),采用层压工艺制作复合材料试样,对试样进行高温力学性能测试与分析,研究了高性能热塑性复合材料在高温条件下的力学性能变化规律及其影响因素。  相似文献   

3.
液相氧化碳纤维增强韧化聚苯硫醚复合材料的性能研究   总被引:7,自引:0,他引:7  
本文论述了液相氧化碳纤维增强聚苯硫醚复合材料性能的研究 ,其中主要讨论增韧剂聚醚砜、碳纤维的混入及不同成型工艺条件对聚苯硫醚树脂体系结晶性的研究 ;碳纤维的重量百分含量、氧化处理程度及成型工艺条件对其复合材料力学性能和耐湿热性 (15 0℃ )的影响  相似文献   

4.
碳纤维增强热塑性树脂基复合材料具有优异的韧性和抗冲击性能,以及预浸料无贮存时间限制、成型周期短、易回收再利用等诸多优势,在军、民用领域具有巨大的应用前景。界面是决定复合材料综合性能的关键因素之一,热塑性上浆剂是目前制约碳纤维热塑性复合材料成型和使役性能的关键瓶颈。总结了碳纤维与热塑性树脂基体的界面作用机理,介绍了热塑性碳纤维上浆剂的作用、类型、制备方法及性能。  相似文献   

5.
采用注射成型的方法,以短切碳纤维为增强体,聚乙烯为基体制备了碳纤维增强热塑性树脂复合材料,并研究了碳纤维含量对该复合材料疲劳性能的影响,分析了短碳纤维增强热塑性树脂复合材料的断裂机理。结果表明,短碳纤维增强热塑性树脂复合材料的疲劳寿命随着碳纤维含量的增加而延长。  相似文献   

6.
《纤维复合材料》2004,21(4):36-36
本发明涉及一类热塑性树脂改性电子束固化复合材料环氧树脂基体。在本发明中,该类环氧树脂体系主要由环氧树脂、光引发剂和热塑性树脂改性剂组成。光引发剂为碘盐或硫盐。改性剂为酚酞改性聚醚酮、酚酞改性聚醚砜以及环氧官能团封端热塑性工程塑料,经它们改性后的电子束固化环氧树脂为基体的碳纤维复合材料的韧性及纤维基体界面得到改善,  相似文献   

7.
《广东化工》2007,34(12):4-4
本发明涉及一类热塑性树脂改性电子柬固化复合材料环氧树脂基体。在本发明中,该类环氧树脂体系主要由环氧树脂、光引发剂和热塑性树脂改性剂组成。光引发剂为碘鎓盐或硫筠盐。改性剂为酚酞改性聚醚酮、酚酞改性聚醚砜以及环氧官能团封端热塑性工程塑料,经它们改性后的电子束固化环氧树脂为基体的碳纤维复合材料的韧性及纤维基体界面得到改善,  相似文献   

8.
近年来,人们成功地研制出复合材料用的高性能热塑性塑料基体,如:聚亚苯基硫醚(PPS)、聚醚醚酮(PEEK)、聚砜(PS)、聚醚砜(PES)和线型芳香族聚酰亚胺(LARC-TPI)等。用这些高性能的热塑性树脂制成的复合材料,其性能超过热固性复合材料的性能,增加了复合材料的韧性、抗冲性、可修复性、抗湿性能和再成型能力等,使热塑性复合材料的应用更加广泛。本文主要介绍新型长纤维和连续纤维增强热塑性塑料。  相似文献   

9.
<正>美国复合材料生产商RTP日前宣布,公司已成功推出一款新型碳纤维增强热塑性复合材料。该复合材料采用世界顶尖级合成工艺生产而成,在增强材料性能的同时保留了纤维的完整性。RTP公司将该新型碳纤维增强热塑性复合材料取名为"彻底高性能复合材料"。此款新型复合材料的树脂基体由聚醚醚酮、高性能聚邻苯二甲酰胺、聚苯硫醚以及聚醚酰亚胺多种树脂复合而成。  相似文献   

10.
将聚醚砜树脂PES制备成水性分散液,利用水性分散液浸渍玄武岩纤维,然后通过热压成型制备了聚醚砜为基体的连续玄武岩纤维增强复合材料,研究了不同树脂含量下复合材料的热学和力学性能。结果表明,以聚醚砜和连续玄武岩纤维质量比为5∶5时得到的复合材料综合性能最优,该复合材料的初始分解温度为522℃,较纯PES树脂高15℃;弯曲强度为546 MPa,弯曲模量可达51.3 GPa。  相似文献   

11.
In fiber‐reinforced plastic materials, the fiber volume fraction is one of the most important parameters, and it strongly influences the composite properties. However, it is hard to improve impregnation and the fiber volume fraction in fiber‐reinforced thermoplastics because thermoplastic resins have high melt viscosities. This study explored a reformative solution impregnation method for molding fabric‐reinforced thermoplastic composites with a high fiber volume fraction. The fiber volume fraction was significantly increased, to 60%, which is equal to that of fiber‐reinforced thermosetting plastic materials. A comparison indicated that a fiber‐reinforced thermoplastic and a fiber‐reinforced thermosetting plastic with the same reinforcing fiber had similar tensile properties and that the proposed molding method is effective in thermoplastic composite manufacture. POLYM. COMPOS., 34:953–958, 2013. © 2013 Society of Plastics Engineers  相似文献   

12.
Cellulose fiber-containing thermoplastic composite materials are being used in an increasing number of applications produced typically by injection molding and extrusion processing methods. One potential way to manufacture thermoplastic cellulosic fiber composites is foam forming technology developed originally for paper manufacturing. This article compares the low-density polyethylene (LDPE) and unrefined northern bleached softwood kraft pulp (NBSKP) composite materials prepared with foam forming, extrusion, and injection molding. The results show that the foam forming enabled three times higher Charpy impact strength properties and 68% higher tensile modulus compared to injection molded 30% NBSKP fiber-containing LDPE composites without changes in composite color. Foam forming is a potential large-scale manufacturing method for thermoplastic composite sheets used, for example, in compression molding or thermoforming.  相似文献   

13.
Four long fiber thermoplastic resin matrices, nylon 6, polypropylene, polyethylene terephthalate, and styrene maleic anhydride, containing differing amounts of long fiber glass reinforcement, were tested for notched Izod impact strength over the temperature range of 22 to −32°C. The notched impact properties of the long fiber thermoplastic composite molding materials are substantially greater than literature values for short fiber analogues. The fiber dominant performance of the long fiber materials is evidenced by increasing impact values with corresponding increases in weight percent fiber content. No apparent ductile/brittle transition in the fracture mode was observed for the long fiber materials that were tested.  相似文献   

14.
采用双螺杆挤出共混的方法,制备了热塑性聚酰亚胺(TPI)/碳纤维(CF)复合材料,考察了注射和热模压两种成型工艺对 TPI/CF 复合材料力学性能、应力-应变曲线、线性膨胀系数以及摩擦磨损性能的影响。结果表明,注射成型试样的各项力学性能均比模压成型的高,达到1.5~2.0倍;相比模压成型,注射成型试样具有较高的断裂强度和断裂伸长率,其应力-应变曲线斜率也较大;由于纤维在注射流动方向上高度取向,注射成型试样具有最佳的高温尺寸稳定性;注射成型试样的摩擦系数和磨损率为模压成型的1.7倍和1.5倍;扫描电镜分析表明,纤维在注射流动方向上高度取向,模压成型试样呈现黏着磨损,注射成型试样以磨粒磨损为主。  相似文献   

15.
The Combination of reaction injection molding and pultrusion has resulted in a new processing technique, RIM-Pultrusion, Which has been used to produce a thermoplastic epoxy prepreg. This prepreg has been used to produce a long-fiber injection molded phenoxy/carbon fiber composite with near-Zero void content. A heat-activated curing system has been developed, which allows injecton molding of the prepreg to form a thermostet long-finer epoxy/carbon finber composite. The RIM- pultrusion conditions for producing an injection moldable prepreg are described. Capillary rheomety is used to study the epoxy resin to determine the proper molar ratio for RIM-Pultrusion. The long-fiber epoxy compostie is analyzed with dynamic mechanical analysis (DMA) and Fourier transform infrared spectroscopy (FTIR). Also., the impact strength and solvent resistance of the long-fiber composite are examined. The properties of the thermoset long-fiber epoxy xomposite are compared to those of a thermoplastic injection molded long-fiber phenoxy composite.  相似文献   

16.
综述了国内外连续碳纤维增强热塑性复合材料(CCFRP)的制备和应用的研究进展,主要对CCFRP的界面改性方法、浸渍工艺和成型工艺进行了介绍,同时也介绍了其应用的状况,对CCFRP的发展前景进行了展望。  相似文献   

17.
The mechanical performance of advanced composite materials depends to a large extent on the adhesion between the fiber and matrix. This is especially true for maximizing the strength of unidirectional composites in off-axis directions. The materials of interest in this study were PAN-based carbon fibers (XA and A4) used in combination with a thermoset (EPON 828 epoxy) and a thermoplastic (liquid crystal poymer) matrix. The effect of surface treatment and sizing were evaluated by measuring the short-beam shear (SBS) and transverse flexural (TF) tensile strengths of unidirectional composites. Results indicated that fiber surface treatment improves the shear and trasverse tensile strengths for both thermosetting and thermoplastic matrix/carbon fiber-reinforced unidirectional composites. A small additional improvement in strengths was observed as the result of sizing treated fibers for the epoxy composites. Scanning electron microscope photomicrographs were used to determine the location of composite failure, relative to the fiber-matrix interface. Finally, the epoxy composites SBS and TF strengths appear to be limited to the maximum transeverse tensile strength of the epoxy matrix, while the thermoplastic composite SBS and TF strengths are limited by the LCP matrix shear and transverse tensile strengths, respectively.  相似文献   

18.
以甲基乙烯基硅橡胶为基体树脂,不同粒径碳化硅(SiC)和碳纤维(CF)复配作为填料,经开炼后模压硫化成型制得高导热复合材料。利用热流法导热系数测试仪(DRL-II)、扫描电子显微镜(SEM)对复合材料的导热性能、微观结构、力学性能进行了表征。结果表明:碳化硅和碳纤维能够均匀的分散在基体树脂中,不同粒径的碳化硅复配能使复合材料的导热性能进一步提高,导热系数达到1.28w/(m.k)。加入碳纤维不仅能使基体内部形成串联的导热网链,进一步提高基体树脂的导热性能,使复合材料的导热系数达到1.88w/(m.k),同时提高了复合材料的拉伸强度。  相似文献   

19.
剑麻纤维增强热塑性淀粉复合材料的制备及性能研究   总被引:1,自引:0,他引:1  
为研究剑麻纤维增强的热塑性淀粉复合材料的制备工艺及热稳定性,以玉米淀粉为原料,先制得热塑性淀粉,再以剑麻纤维为骨架增强体制备剑麻纤维增强热塑性淀粉复合材料,通过正交试验优化制备工艺,DSC、TG/DTG、SEM分析其热稳定性及结构。正交试验表明,各因素对材料抗拉强度影响的主次顺序为纤维长度 >纤维用量 >模压成型温度 >填料用量;最佳工艺条件为纤维长度15mm、纤维用量35g、模压成型温度200℃、填料用量5g,此时材料的抗拉强度可达到4.45MPa。利用差示扫描量热分析和热重分析分别对热塑性淀粉及剑麻纤维复合材料的热稳定性进行了分析,结果表明,热塑处理提高了淀粉的熔融温度,有利于淀粉与纤维素羟基间的氢键结合,且热塑过程在一定程度上降低了淀粉的热稳定性;剑麻纤维复合材料的热降解过程主要发生在200~400℃温度区间。SEM分析显示最佳工艺条件下得到的复合材料具有较好的泡孔结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号