首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Second-generation adenoviral vectors, mutated in E2a, have been proposed to decrease host immune responses against transduced cells, reduce toxicity, and increase duration of expression as compared with first-generation vectors deleted only in E1. To test these hypotheses further, we have developed an E2a-deleted adenoviral vector expressing human alpha1-antitrypsin (hAAT). Toxicity of first-generation and E2a-deleted vectors, as determined by hematological indices, liver function tests, and histological analyses, was evaluated in C3H mice for 21 days after vector administration at increasing doses starting at 1 x 10(12) particles/kg. Both vectors induced dose-dependent abnormalities including transient thrombocytopenia, elevated ALT levels in serum, and increased hepatocyte proliferation followed by inflammation and then hypertrophy. Differences in the ratio of particles to plaque-forming units among vector preparations led to differences in hAAT expression at similar particle doses. There were no differences in toxicity between the two vectors when measured at matching levels of hAAT expression. However, the E2a-deleted vector was demonstrated to have slightly reduced hepatocyte toxicity at an intermediate particle dose. This suggests that hepatocyte toxicity is related primarily to viral entry and expression, rather than to the presence of noninfectious particles, and implies that vectors with complete elimination of viral gene expression, such as vectors with all viral coding sequences deleted, are likely to have substantial advantages in terms of safety and toxicity.  相似文献   

2.
To regulate expression of a transferred gene in response to an exogenous compound, we have combined a high capacity adenoviral vector devoid of all viral coding sequences with a regulatory system that can be used to express a target gene in vivo in a selected site and at a desired time. This system uses a chimeric transactivator, GLp65, which consists of a mutated progesterone receptor-ligand binding domain fused to the GAL4 DNA binding domain and part of the activation domain of the human p65 protein, a component of the NF-kappaB complex. In the presence of the antiprogestin mifepristone, this chimeric regulator binds to a target gene containing the 17-mer GAL4 binding site, resulting in an efficient ligand-inducible transactivation of the target gene. We inserted the regulator GLp65 and a regulable human growth hormone target gene containing the 17-mer GAL4 binding site into the same adenoviral vector. To obtain tissue-specific expression of the target gene, we coupled the regulator to a liver-specific promoter. Infection of HepG2 cells and experimental mice with the adenovirus resulted in consistently high induction levels of human growth hormone in the presence of mifepristone whereas the transgene expression was undetectable in the absence of the ligand. Taken together, our regulable adenoviral vector represents an important tool for transgene regulation that can be used for potentially diverse applications, ranging from tissue-specific gene expression in transgenic animals to human gene therapy.  相似文献   

3.
Although adenoviral vectors are attractive for gene transfer, their effectiveness is limited by host antiviral immune responses. In this study, we determined if host antiallograft and antiviral immunity could be diminished with an adenoviral vector encoding the immunosuppressive cytokine viral interleukin-10 (vIL-10). AdSV40vIL-10, a vIL-10-expressing adenoviral vector with an SV40 promoter, induced significant prolongation of murine cardiac allograft survival to 32.2 +/- 1.7 days compared to 14.2 +/- 1.0 days for controls (p < 0.01). This effect was specific for vIL-10 encoding vector and could be inhibited by anti-vIL-10 monoclonal antibody (mAb). In vivo administration of adenovirus facilitated the generation of adenovirus-specific cytotoxic T lymphocytes (CTL), whereas treatment with AdSV40vIL-10 prevented CTL priming and generation of virus-specific immunity. AdSV40vIL-10 also induced extended expression of a beta-galactosidase reporter from a co-injected LacZ-encoding adenoviral vector. These results demonstrate that adenovirus-mediated gene transfer and expression of vIL-10 prolong allograft survival and inhibit the immune response to adenoviral antigens, thereby improving the persistence of the vector and extending transgene expression. The efficacy of adenoviral vectors can be improved by incorporating immunosuppressive genes into the vector.  相似文献   

4.
A system has been developed that can generate recombinant baculovirus expression vectors at frequencies approaching 100%. This system provides a selection for recombinant viruses by using the essential gene downstream of the Autographa californica nuclear polyhedrosis virus (AcMNPV) polyhedrin expression locus. Two AcMNPV derivatives were constructed in which the expression locus and part of the downstream gene are flanked by restriction sites. The parental viruses are viable; however, restriction of the viral DNAs removes an essential piece of the viral genome. Transfer vectors carry a copy of the missing sequences downstream from the site into which foreign genes are inserted for expression; hence, recombination between a transfer vector and the restricted viral DNA can restore the integrity of the essential gene. Such recombination events also transfer any foreign gene present in the expression locus of the transfer vector to the viral genome. Recombinant viruses therefore have a selective advantage over nonrecombinant viral DNAs. Consequently, a high proportion of the viruses obtained by co-transfecting transfer vector DNA and restricted viral DNA of one of these new viruses expresses the target gene from the transfer vector. This system greatly reduces the time needed to make recombinant baculovirus expression vectors.  相似文献   

5.
One of the major limitations to current gene therapy is the low-level and transient vector gene expression due to poorly defined mechanisms, possibly including promoter attenuation or extinction. Because the application of gene therapy vectors in vivo induces cytokine production through specific or nonspecific immune responses, we hypothesized that cytokine-mediated signals may alter vector gene expression. Our data indicate that the cytokines interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) inhibit transgene expression from certain widely used viral promoters/enhancers (cytomegalovirus, Rous sarcoma virus, simian virus 40, Moloney murine leukemia virus long terminal repeat) delivered by adenoviral, retroviral or plasmid vectors in vitro. A constitutive cellular promoter (beta-actin) is less sensitive to these cytokine effects. Inhibition is at the mRNA level and cytokines do not cause vector DNA degradation, inhibit total cellular protein synthesis, or kill infected/transfected cells. Administration of neutralizing anti-IFN-gamma monoclonal antibody results in enhanced transgene expression in vivo. Thus, standard gene therapy vectors in current use may be improved by altering cytokine-responsive regulatory elements. Determination of the mechanisms involved in cytokine-regulated vector gene expression may improve the understanding of the cellular disposition of vectors for gene transfer and gene therapy.  相似文献   

6.
With the ultimate goal of modulating the host immune response in organ transplantation, gene therapy studies have demonstrated that direct plasmid DNA injection into transplanted myocardium can result in detectable levels of transgene expression. However, the restricted distribution and low level of transgene expression evident in these studies have limited its application. Recently, replication-defective adenovirus vectors have been shown to be an efficient gene-transfer vehicle in vivo whose infection does not require target-cell proliferation. In the present study, adenovirus vectors encoding reporter genes were delivered into transplanted hearts by either direct injection into the myocardium or perfusion via aorta of the donor hearts. The efficacy and stability of the transgene expression by perfusion and by direct injection were examined and compared. Using the adenovirus vector encoding the firefly luciferase gene, we found that a higher level of transgene expression was achieved by direct injection, but that more evenly distributed transgene expression was observed in hearts perfused with viral vector. These results were further confirmed by 5-bromo-4-chloro-3-indolyl-beta-d-galactoside histochemical staining of another adenoviral vector encoding beta-galactosidase. The transgene expression was not stable and decreased within 1 month with either delivery method. Nevertheless, these results indicate that adenovirus-mediated gene transfer can result in short-term expression of the gene throughout the heart and may be useful as a gene vector in organ transplantation.  相似文献   

7.
The complementation of adenoviral vectors with large deletions in the viral genome was studied. The helper adenovirus used to complement these vectors contains a partial deletion of the packaging signal and the E1 region substituted by the lacZ gene. The effect of vector size on packaging efficiency was analysed in 293 cells using decreasingly shorter vectors expressing GFP from a CMV enhancer-beta-actin promoter. Vectors with longer genomes propagated more efficiently than shorter ones. Vectors containing only the packaging signal and the ITRs of Ad5, having all the viral genes replaced with unrelated sequences packaged as efficiently as vectors of the same size containing adenoviral DNA instead of exogenous DNA. The amounts of helper and vector produced in coinfected 293 cells exhibited the typical cycling fluctuation observed during serial propagation of a virus with defective interfering particles.  相似文献   

8.
The large size of the adenoviral genome unfortunately precludes there being many unique, useful restriction sites available for in vitro manipulation. Two methods have been developed for the construction of recombinant adenoviral vectors to date: in vivo homologous recombination or direct ligation in vitro. The efficiency of either the direct ligation method or the homologous recombination method is low because of the large size of the recombinant adenoviral vectors. To circumvent these problems, we have chosen to use the cosmid vector system to facilitate the assembly of recombinant adenoviral vectors. In this paper, we demonstrate for the first time that recombinant adenoviral vectors can be efficiently constructed in vitro by the cosmid vector system. With this method, it is possible to amplify the recombinant adenoviral vector DNA sufficiently to transfect 293 cells. The cosmid adenoviral vector cloning method for in vitro construction of the full-length recombinant adenoviral vectors represented here is simple and efficient and should facilitate the development of recombinant adenoviral vectors for human gene therapy.  相似文献   

9.
Gene therapy to correct defective genes requires efficient gene delivery and long-term gene expression. The available vector systems have not allowed the simultaneous achievement of both goals. We have developed a chimeric viral vector system that incorporates favorable aspects of both adenoviral and retroviral vectors. Adenoviral vectors induce target cells to function as transient retroviral producer cells in vivo. The progeny retroviral vector particles are then able to stably transduce neighboring cells. In this system, the nonintegrative adenoviral vector is rendered functionally integrative via the intermediate generation of a retroviral producer cell. The chimeric vectors may allow realization of the requisite goals for specific gene-therapy applications.  相似文献   

10.
The utility of adenovirus vectors for gene therapy is limited by the transience of expression that has been observed in various in vivo models. Immunological responses to viral targets can eliminate transduced cells and cause the loss of transgene expression. We previously described the characterization of an E4 modified adenovirus, Ad2E4ORF6, which is replication defective in cotton rats. We reasoned that gene transfer vectors based on Ad2E4ORF6 would have a reduced potential for viral gene expression in vivo which might be beneficial for achieving persistence of transgene expression. E1 replacement vectors expressing the cystic fibrosis transmembrane regulator or beta-galactosidase were constructed as series of vectors that differed with respect to the E4 region. Vectors containing a wild-type E4 region, E4 open reading frame 6, or a complete E4 deletion were compared in the lungs of BALB/c mice for persistence of expression. Results obtained with nude mice indicate that nonimmunological factors have a major influence on the longevity of transgene expression. Expression was transient from the E1a promoter with all vectors but persisted from the cytomegalovirus promoter only with a vector containing a wild-type E4 region. Transience of expression did not correlate with the disappearance of vector DNA, suggesting that promoter down-regulation may be involved. Coinfection studies indicate an E4 product(s) could be supplied in trans to allow persistent expression from the cytomegalovirus promoter. In summary, the choice of promoter is important for achieving persistence of expression; in addition, some promoters are highly influenced by the context of the vector backbone.  相似文献   

11.
12.
Human adenoviruses (Ads) are attracting considerable attention because of their potential utility for gene transfer and gene therapy, for development of live viral vectored vaccines, and for protein expression in mammalian cells. Engineering Ad vectors for these applications requires a variety of reagents in the form of Ads and bacterial plasmids containing viral DNA sequences and requires different strategies for construction of vectors for different purposes. To simplify Ad vector construction and develop a procedure with maximum flexibility, efficiency, and cloning capacity, we have developed a vector system based on use of Ad5 DNA sequences cloned in bacterial plasmids. Expanded deletions in early region 1 (3180 bp) and early region 3 (2690 or 3132 bp) can be combined in a single vector that should have a capacity for inserts of up to 8.3 kb, enough to accommodate the majority of cDNAs encoding proteins with regulatory elements. Genes can be inserted into either early region 1 or 3 or both and mutations or deletions can be readily introduced elsewhere in the viral genome. To illustrate the flexibility of the system, we have introduced a wild-type early region 3 into the vectors, and to illustrate the high capacity for inserts, we have isolated a vector with two genes totaling 7.8 kb.  相似文献   

13.
Cardiovascular gene therapy is becoming a clinical reality due to improved vectors, delivery systems and careful experimental validation studies. Nearly all cardiovascular diseases are amenable to gene therapy, but the optimal combination of vector, delivery system and therapeutic gene is likely to be unique to each application. Currently, the most efficient vectors available are replication-defective adenoviral vectors, but transgene expression is limited in time due to a strong immune response. Conversely, non-viral vectors or plasmid DNA may be used safely but have very limited efficiency. Percutaneous, catheter-based delivery is feasible for most applications. The ultimate issues that will decide of the future of gene therapy are safety of the transfer and delivery techniques as well as cost/effectiveness comparisons with alternative therapies, including local delivery of drugs, proteins and/or mechanical devices.  相似文献   

14.
Recombinant adenovirus vectors represent an efficient means of transferring genes into many different organs. The first-generation E1-deleted vector genome remains episomal and, in the absence of host immunity, persists long-term in quiescent tissues such as the liver. The mechanism(s) which allows for persistence has not been established; however, vector DNA replication may be important because replication has been shown to occur in tissue culture systems. We have utilized a site-specific methylation strategy to monitor the replicative fate of E1-deleted adenovirus vectors in vitro and in vivo. Methylation-marked adenovirus vectors were produced by the addition of a methyl group onto the N6 position of the adenine base of XhoI sites, CTCGAG, by propagation of vectors in 293 cells expressing the XhoI isoschizomer PaeR7 methyltransferase. The methylation did not affect vector production or transgene expression but did prevent cleavage by XhoI. Loss of methylation through viral replication restores XhoI cleavage and was observed by Southern analysis in a wide variety of, but not all, cell culture systems studied, including hepatoma and mouse and macaque primary hepatocyte cultures. In contrast, following liver-directed gene transfer of methylated vector in C57BL/6 mice, adenovirus vector DNA was not cleaved by XhoI and therefore did not replicate, even after a period of 3 weeks. Although replication may occur in some tissues, these results show that stabilization of the vector within the target tissue prior to clearance by host immunity is not dependent upon replication of the vector, demonstrating that the input transduced DNA genomes were the persistent molecules. This information will be useful for the design of optimal adenovirus vectors and perhaps nonviral episomal vectors for clinical gene therapy.  相似文献   

15.
In this paper a detailed protocol is presented for neuroscientists planning to start work on first generation recombinant adenoviral vectors as gene transfer agents for the nervous system. The performance of a prototype adenoviral vector encoding the bacterial lacZ gene as a reporter was studied, following direct injection in several regions of the central and peripheral nervous system. The distribution of the cells expressing the transgene appears to be determined by natural anatomical boundaries and possibly by the degree of myelinization of a particular brain region. In highly myelinated areas with a compact cellular structure (e.g. the cortex and olfactory bulb) the spread of the viral vector is limited to the region close to the injection needle, while in areas with a laminar structure (e.g. the hippocampus and the eye) more widespread transgene expression is observed. Retrograde transport of the viral vector may serve as an attractive alternative route of transgene delivery. A time course of expression of beta-galactosidase in neural cells in the facial nucleus revealed high expression during the first week after AdLacZ injection. However, a significant decline in transgene expression during the second and third week was observed. This may be caused by an immune response against the transduced cells or by silencing of the cytomegalovirus promoter used to drive transgene expression. Taken together, the data underscore that for each application of adenoviral vectors as gene transfer agents in the nervous system it is important to examine vector spread in and infectability of the neural structure that is subject to genetic modification.  相似文献   

16.
A number of preclinical and human clinical gene therapy trials using adenoviral vectors have shown that the number of viral particles necessary to give adequate levels of gene transfer can be associated with significant vector-related toxicity. In an effort to reduce the number of adenoviral particles required for a given level of gene transfer, we sought to redirect adenoviral infection via a receptor that is highly expressed on the target cells. By using basic fibroblast growth factor (FGF2) as the targeting ligand, adenovirus-mediated gene transfer to the human ovarian cancer cell line SKOV3.ip1 was significantly enhanced, permitting the transduction of a greater number of target cells to be achieved by a given dose of virus. In a murine model of human ovarian carcinoma, an FGF2-redirected adenoviral vector carrying the gene for herpes simplex virus thymidine kinase (AdCMVHSV-TK) was shown to result in a significant prolongation of survival compared with the same number of particles of unmodified AdCMVHSV-TK. In addition, equivalent survival rates were achieved with a 10-fold lower dose of the FGF2-redirected AdCMVHSV-TK compared with the unmodified vector. To our knowledge, this is the first report demonstrating that strategies to enhance the efficiency of in vivo transduction of adenoviral vectors will be of clinical utility.  相似文献   

17.
Animal studies indicate that the use of replication-deficient adenovirus for human gene therapy is limited by host antivector immune responses that result in transient recombinant protein expression and blocking of gene transfer when rechallenged. Therefore, we have examined immune responses to an adenoviral vector and to the beta-galactosidase protein in four patients with lung cancer given a single intratumor injection of 10(9) plaque-forming units of recombinant adenovirus. The beta-galactosidase protein was expressed in day-8 tumor biopsies from all patients at variable levels. Recombinant virus DNA was detected by PCR in day-30 and day-60 tumor biopsies from all patients except patient 1. A high level of neutralizing antiadenovirus antibodies was detected in patient 1 before Ad-beta-gal injection whereas it was low (patient 3) or undetectable in the other two patients. All patients developed potent CD4 type 1 helper T cell (Th1) responses to adenoviral particles which increased gradually over time after injection. Antiadenovirus cytotoxic T lymphocyte responses were consistently boosted in the two patients examined (patients 3 and 4). Sustained production of anti-beta-galactosidase IgG was observed in all patients except patient 1. Consistent with anti-beta-gal antibody production, all patients except patient 1 developed intense, dose-dependent Th1 responses to soluble beta-galactosidase which increased over time. Strong beta-galactosidase-specific cytotoxic T lymphocyte responses were detected in patients 2, 3, and 4. Our results clearly show that despite the intensity of antiadenovirus responses, transgene protein expression was sufficient to induce strong and prolonged immunity in three patients. Recombinant adenovirus injected directly into the tumor is a highly efficient vector for immunizing patients against the transgene protein.  相似文献   

18.
Intracellular expression of gene products that inhibit viral replication have the potential to complement current antiviral approaches to the treatment of AIDS. We previously have shown that a mutant inhibitory form of an essential viral protein, Rev M10, prolongs the survival of T cells transduced with a nonviral vector in HIV-infected individuals. Because these gene-modified cells were not observed in patients beyond 8 weeks, efforts were made to improve the duration of engraftment. In this study, we used retroviral vector delivery of Rev M10 to CD4(+) cells and analyzed relevant immune responses in a pilot study of three HIV-seropositive patients. DNA and RNA PCR analyses revealed that cells transduced with Rev M10 retroviral vectors survived and expressed the recombinant gene for significantly longer time periods than those transduced with a negative control vector in all three patients. Immune responses were not detected either to Rev M10 or to Moloney murine leukemia virus gp70 envelope protein. Rev M10-transduced cells were detected for an average of 6 months after retroviral gene transfer compared with approximately 3 weeks for the previously reported nonviral vector delivery. These findings suggest that retroviral delivery of an antiviral gene may potentially contribute to immune reconstitution in AIDS and could provide a more effective vector to prolong survival of CD4(+) cells in HIV infection.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号