首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Classical class I major histocompatibility complex (MHC) molecules, as well as the nonclassical class I histocompatibility leukocyte antigen (HLA)-E molecule, can negatively regulate natural killer (NK) cell cytotoxicity through engagement of NK inhibitory receptors. We show that expression of murine (m)CD1.1, a nonpolymorphic nonclassical MHC class I-like molecule encoded outside the MHC, protects NK-sensitive RMA/S target cells from adherent lymphokine-activated killer cell (A-LAK) cytotoxicity. Passage of effector cells in recombinant interleukin (rIL)-2 enhanced protection by mCD1.1, suggesting an expansion of relevant A-LAK population(s) or modulation of A-LAK receptor expression. Murine CD1. 1 conferred protection from lysis by rIL-2-activated spleen cells of recombination activating gene (Rag)-1(-/-) mice, which lack B and T cells, demonstrating that mCD1.1 can protect RMA/S cells from lysis by NK cells. An antibody specific for mCD1.1 partially restored A-LAK lysis of RMA/S.CD1.1 transfectants, indicating that cell surface mCD1.1 can confer protection from lysis; therefore, mCD1.1 possibly acts through interaction with an NK inhibitory receptor. CD1.1 is by far the most divergent class I molecule capable of regulating NK cell activity. Finally, mCD1.1 expression rendered RMA/S cells resistant to lysis by A-LAK of multiple mouse strains. The conserved structure of mCD1.1 and pattern of mCD1.1 resistance from A-LAK lysis suggest that mCD1.1 may be a ligand for a conserved NK inhibitory receptor.  相似文献   

2.
Anesthesia (Avertin, halothane, isoflurane, ether, or ketamine/xylazan) of mice inhibits subsequent stimulation of splenic natural killer cell (NK) cytotoxicity by interferon (IFN) treatment either in vitro and in vivo. The current data demonstrate (a) in vitro depletion of CD8+ cells from mononuclear splenocytes of anesthetized mice restored the ability of NK cells to respond in vitro to IFN stimulation and (b) coincubation of CD8+ splenocytes from anesthetized mice with CD8- splenocytes of naive mice resulted in a significant reduction of the IFN-induced stimulation of NK activity in the coculture. These results suggest that anesthesia induces CD8+ cells that suppress stimulation of NK cytotoxicity by IFN.  相似文献   

3.
We describe here the in vitro and in vivo antileukemia activity of a recently described natural killer (NK) cell line (NK-92), which has features of human activated NK cells. The cytotoxic activity of rhIL2-dependent cultured NK-92 cells against primary patient-derived leukemic target cells [12 acute myelogenous leukemias (AMLs), 7 T acute lymphoblastic leukemias (T-ALLs), 14 B-lineage-ALLs, and 13 chronic myelogenous leukemias (CMLs)], human leukemic cell lines (K562, KG1, HL60, Raji, NALM6, TALL-104, CEM-S, and CEM-T) and normal bone marrow cells was measured in 51Cr-release assay (CRA). The patient-derived leukemias could be subdivided into three groups based on their sensitivity to NK-92 cells: insensitive (< or =19% lysis), sensitive (20-49% lysis), and highly sensitive (> or =50% lysis) at an E:T ratio of 9:1. Of 46 patient-derived samples, 24 (52.2%) were sensitive or highly sensitive to NK-92-mediated in vitro cytotoxicity (6 of 12 AMLs, 7 of 7 T-ALLs, 5 of 14 B-lineage-ALLs, and 6 of 13 CMLs). NK-92 cells were highly cytotoxic against all of the eight leukemic cell lines tested in a standard 4-h CRA. Normal human bone marrow hematopoietic cells derived from 18 normal donors were insensitive to NK-92-mediated cytolysis. In comparison with human lymphokine-activated killer cells, normal NK cells, and T cells, NK-92 cells displayed more powerful antileukemia activity against a patient-derived T-ALL as well as K562 and HL60 cells, both in in vitro CRA and in a xenografted human leukemia SCID mouse model. The NK-92 cells did not induce the development of leukemia in SCID mice after i.v., i.p., or s.c. inoculation. In adoptive transfer experiments, SCID mice receiving i.p. inoculations of human leukemias derived from a T-ALL (TA27) and an AML (MA26) that were highly sensitive to the cytolysis of NK-92 cells in vitro, as well as a pre-B-ALL (BA31) that was insensitive to the in vitro cytolysis of NK-92 cells, were treated by administration of NK-92 cells with or without rhIL2 (2 x 10(7) NK-92 cells i.p.; one dose or five doses). Survival times of SCID mice bearing the sensitive TA27 and MA26 leukemias were significantly prolonged by adoptive cell therapy with NK-92 cells. Some of the animals who received five doses of NK-92 cells with or without rhIL2 administration were still alive without any signs of leukemia development 6 months after leukemia inoculation. In contrast, survival of mice bearing the insensitive BA31 leukemia were not affected by this treatment. This in vitro and in vivo antileukemia effect of NK-92 cells suggests that cytotoxic NK cells of this type may have potential as effectors of leukemia control.  相似文献   

4.
5.
Lymphotactin (Lptn) is a new protein belonging to the C or gamma subfamily of chemokines with only two of the four cysteine residues. Lptn was reported to act specifically on T lymphocytes and not on monocytes and neutrophils. To understand better the spectrum of action of Lptn we have examined its ability to induce natural killer (NK) cell migration. Freshly isolated human NK cells as well as long-term cultured NK cells propagated in interleukin-2 (IL-2)-containing medium migrated in response to Lptn. Optimal activity was observed at concentrations ranging from 50 to 200 ng/ml, and the efficacy was comparable to that of MCP-1, the prototype of C-C chemokines. Migration in response to Lptn was chemotaxis rather than chemokinesis as determined in a checkerboard analysis. Migration of NK cells was comparable to that observed with T lymphocytes from the same donor, under the same experimental conditions. Finally, in contrast to other cytokines (IL-2 and IL-12) which in addition to chemotaxis augment NK cell adhesion to endothelial cells in vitro, Lptn did not affect the adhesiveness of NK cells to vascular endothelium.  相似文献   

6.
A variety of strategies have been attempted in the past to stably transduce natural killer (NK) cells with cytokine or other cellular genes. Here, we demonstrate the successful delivery of the interleukin-2 (IL-2) gene into two human NK cell lines, IL-2-dependent NK-92 and IL-2-independent YT, by retroviral transduction. An MuLV-based retroviral vector expressing human IL-2 and neor markers from a polycistronic message was constructed and transduced into a CRIP packaging cell line. By coincubation of NK cells with monolayers of CRIP cells or by using retrovirus-containing supernatants in a flow-through method, 10% to 20% of NK cells were stably transduced. Upon selection in the presence of increasing G418 concentrations, transduced NK cells were able to proliferate independently of IL-2 for more than 5 months and to secrete up to 5.5 ng/10(6) cells/24 h of IL-2. IL-2 gene-transduced NK-92 cells had an in vitro cytotoxicity against tumor targets that was significantly higher than that of parental cells and secreted interferon gamma (IFNgamma) and tumor necrosis factor alpha (TNFalpha) in addition to IL-2. Moreover, the in vivo antitumor activity of IL-2 gene-transduced NK-92 cells against established 3-day liver metastases in mice was greater than that of parental nontransduced NK cells. Stable expression of the IL-2 transgene in NK cells improved their therapeutic potential in tumor-bearing hosts. Thus, transduced NK cells secreted sufficient quantities of bioactive IL-2 to proliferate in vitro and mediated the antitumor effects both in vitro and in vivo in the absence of exogenous IL-2. These results suggest that genetic modification of NK cells ex vivo could be useful for clinical cancer therapy in the future.  相似文献   

7.
Progression to destructive insulitis in nonobese diabetic (NOD) mice is linked to the failure of regulatory cells, possibly involving T helper type 2 (Th2) cells. Natural killer (NK) T cells might be involved in diabetes, given their deficiency in NOD mice and the prevention of diabetes by adoptive transfer of alpha/beta double-negative thymocytes. Here, we evaluated the role of NK T cells in diabetes by using transgenic NOD mice expressing the T cell antigen receptor (TCR) alpha chain Valpha14-Jalpha281 characteristic of NK T cells. Precise identification of NK1.1(+) T cells was based on out-cross with congenic NK1.1 NOD mice. All six transgenic lines showed, to various degrees, elevated numbers of NK1.1(+) T cells, enhanced production of interleukin (IL)-4, and increased levels of serum immunoglobulin E. Only the transgenic lines with the largest numbers of NK T cells and the most vigorous burst of IL-4 production were protected from diabetes. Transfer and cotransfer experiments with transgenic splenocytes demonstrated that Valpha14-Jalpha281 transgenic NOD mice, although protected from overt diabetes, developed a diabetogenic T cell repertoire, and that NK T cells actively inhibited the pathogenic action of T cells. These results indicate that the number of NK T cells strongly influences the development of diabetes.  相似文献   

8.
The murine Ly-49 antigen belongs to a family of type II transmembrane molecules containing lectin-like domains. The original member of this family, Ly-49A, has been demonstrated to be expressed by a subpopulation of natural killer (NK) cells, bind certain class I major histocompatibility complexes (MHC), and act as a negative regulator of lytic activity. The expression patterns and functional activities of the other Ly-49s, however, is unknown. We extended the study of this family by isolating cDNAs encoding two new Ly-49 molecules. The reactivity of these and previously identified Ly-49 molecules with NK antibodies was tested in a COS cell expression system. YE1/32 and YE1/48 bound Ly-49A specifically, and 5E6 reacted only with Ly-49C. Three-color flow cytometric analysis demonstrated Ly-49A and Ly-49C expression defines complex, but distinct subsets within NK1.1+ cells. Some NK1.1-CD3+ as well as NK1.1-CD3- cells expressing Ly-49A or C were also detected. Analysis of MHC congenic strains of mice demonstrated that YE1/32+ and YE1/48+ NK cells are not deleted, as has been shown with the Ly-49A mAb A1. Furthermore, COS cells transfected with Ly-49A bound H-2d and H-2k cell lines, whereas Ly-49C transfectants bound H-2d, H-2k, H-2b, and H-2s. The antibodies 5E6 and 34-1-2S (anti-class I MHC) inhibited the binding of Ly-49C to an H-2s cell line. These results imply that the NK cell antigens Ly-49A and C bind to different repertoires of class I MHC molecules.  相似文献   

9.
BACKGROUND: Human natural killer (NK) cells mediate spontaneous cytotoxicity against tumor cells and represent the main precursors of lymphokine-activated killer (LAK) cell activity. A comparison of some aspects of NK and LAK cell activity was undertaken in 85 preoperative patients with breast cancer and 75 healthy donors. METHODS: NK cell activity (tested in 18-hour cultures of effector peripheral blood mononuclear cells [PBMC] with K562 or MOLT-4 tumor target cells) was significantly diminished in these patients as it was the fully mature LAK cell activity (i.e., interleukin-2 (IL-2)-induced cytotoxicity in PBMC) against NK resistant target cells. Using immunoenzymatic methods we showed that the reduced NK cell activity was due to abnormally high levels of prostaglandin E2 (PGE2) produced by monocytes in culture. RESULTS: PGE2 was found to suppress the production of IL-2 in these cultures. Removal of monocytes from PBMC restored to almost normal levels the deficient NK and LAK cell activity in patients with breast cancer and was also associated with a normalization in the levels of PGE2 and IL-2. Indomethacin and gamma-interferon (IFN-gamma) increased the NK and LAK cell activity in these patients up to the levels of healthy donors. When highly purified CD56+ cells (obtained by an immunomagnetic isolation technique) were used as effector cells, no differences in LAK cell activity could be noticed between healthy donors and patients with cancer. FACS and northern blot analyses demonstrated a PGE2-mediated down-regulation of IL-2 receptor (IL-2R) expression on CD56+ cells that correlated with reduced LAK cell activity. This inhibitory effect of PGE2 was noticeable in long-term LAK cultures and was abrogated in the presence of IFN-gamma or indomethacin. CONCLUSION: This study may have important implications in the potentiation of NK and LAK cell activity for immunotherapeutic protocols in patients with breast cancer.  相似文献   

10.
Radioresistant host elements mediate positive selection of developing thymocytes, whereas bone marrow-derived cells induce clonal deletion of T cells with receptors that are strongly autoreactive. In contrast to T cell development, little is known about the elements governing the natural killer (NK) cell repertoire, which, similar to the T cell repertoire, differs between individuals bearing different major histocompatibility complex (MHC) phenotypes. We have used murine bone marrow transplantation models to analyze the influence of donor and host MHC on an NK cell subset. We examined the expression of Ly-49, which is strongly expressed on a subpopulation of NK cells of H-2b mice, but not by NK cells of H-2a mice, probably because of a negative effect induced by the interaction of Ly-49 with Dd. To evaluate the effect of hematopoietic cell H-2a expression on Ly-49 expression of H-2b NK cells, we prepared mixed allogeneic chimeras by administering T cell-depleted allogeneic (B10.A, H-2a) and host-type (B10, H-2b) marrow to lethally irradiated B10 mice, or by administering B10. A marrow to B10 recipients conditioned by a nonmyeloablative regimen. Expression of H-2a on bone marrow-derived cells was sufficient to downregulate Ly-49 expression on both H-2a and H-2b NK cells. This downregulation was thymus independent. To examine the effect of H-2a expressed only on radioresistant host elements, we prepared fully allogeneic chimeras by administering B10 bone marrow to lethally irradiated B10.A recipients. B10 NK cells of these fully allogeneic chimeras also showed downregulation of Ly-49 expression. The lower level of H-2a expressed on H-2b x H-2a F1 cells induced more marked downregulation of Ly-49 expression on B10 NK cells when presented on donor marrow in mixed chimeras than when expressed only on radioresistant host cells. Our studies show that differentiation of NK cells is determined by interactions with MHC molecules expressed on bone marrow-derived cells and, to a lesser extent, by MHC antigens expressed on radioresistant host elements.  相似文献   

11.
Natural killer (NK) cells can kill target cells by either necrotic or apoptotic mechanisms. Using the 51Cr-release assay to measure necrotic death of target cells, neonatal NK cells had low NK activity (K562 targets) and high lymphokine-activated killer (LAK) activity (Daudi targets) compared with adult cells, as has been previously reported. Using a 125I-deoxyuridine (125I-UdR) release assay, cord cells were shown to also have higher apoptotic LAK activity against YAC-1 target cells. Interleukin-4 (IL-4) inhibited interleukin-2 (IL-2)-induced necrotic killing of target cells by adult effectors but had no such inhibitory effect on cord cells. In contrast, IL-4 inhibited both adult and cord LAK cytotoxicity of YAC-1 target cells by apoptotic mechanisms with higher suppression observed in cord cell preparations. Using a colorimetric substrate conversion assay, IL-2 induced higher, and IL-4 had a more significant suppressive effect on, cord cell granzyme B enzyme activity compared with adult cells, paralleling apoptosis cytotoxicity data. Co-culture of either adult or cord LAK cells with IL-4 had a similar inhibitory effect on granzyme B protein expression, as detected by Western blotting. In contrast, IL-4 did not inhibit perforin expression, thereby defining IL-4 as a cytokine that can differentially regulate the NK cell-mediated cytotoxicity processes of apoptosis and necrosis. The differential sensitivity of cord cells to cytokine regulation of cytotoxicity may also have implications for cord blood transplantations, as NK cells are known to function as an effector cell in both graft-versus-host disease and in the graft-versus-leukaemia phenomena.  相似文献   

12.
The establishment of the human placenta in early pregnancy is characterized by the presence of large numbers of natural killer (NK) cells within the maternal decidua in close proximity to the fetally-derived invading extravillous trophoblast which expresses at least two HLA class I molecules, HLA-G and HLA-C. These NK cells have an unusual phenotype, CD56(bright) CD16, distinguishing them from adult peripheral blood NK cells. They may control key events in trophoblast migration and therefore placentation. Human NK cells in peripheral blood express receptors for polymorphic HLA class I molecules. This family of receptors, known as killer cell inhibitory receptors (KIR), are expressed on overlapping subsets of NK cells to give an NK cell repertoire which differs between individuals. Using a panel of monoclonal antibodies to several members of the KIR family and analysis by flow cytometry, we have found that KIR are expressed by decidual NK cells. There is variation in both the percentage of cells expressing a particular receptor and the density of receptor expression between decidual NK cells from different individuals. Comparison of NK cells from decidua and peripheral blood of the same individual showed that NK cells from these two different locations express different repertoires of KIR. Receptors are present in individuals who do not possess the relevant class I ligand, raising the possibility that these NK receptors may be involved in recognition of the allogeneic fetus by the mother at the implantation site.  相似文献   

13.
The killer cell inhibitory receptors (KIR) of human natural killer (NK) cells recognize human leukocyte antigen class I molecules and inhibit NK cell cytotoxicity through their interaction with protein tyrosine phosphatases (PTP). Here, we report that KIR recognition of class I ligands inhibits distal signaling events and ultimately NK cell cytotoxicity by blocking the association of an adaptor protein (pp36) with phospholipase C-gamma in NK cells. In addition, we demonstrate that pp36 can serve as a substrate in vitro for the KIR-associated PTP, PTP-1C (also called SHP-1), and that recognition of class I partially disrupts tyrosine phosphorylation of NK cell proteins, providing evidence for KIR-induced phosphatase activity.  相似文献   

14.
The earliest contact between antigen and the innate immune system is thought to direct the subsequent antigen-specific T cell response. We hypothesized that cells of the innate immune system, such as natural killer (NK) cells, NK1.1(+) T cells (NKT cells), and gamma/delta T cells, may regulate the development of allergic airway disease. We demonstrate here that depletion of NK1.1(+) cells (NK cells and NKT cells) before immunization inhibits pulmonary eosinophil and CD3(+) T cell infiltration as well as increased levels of interleukin (IL)-4, IL-5, and IL-12 in bronchoalveolar lavage fluid in a murine model of allergic asthma. Moreover, systemic allergen-specific immunoglobulin (Ig)E and IgG2a levels and the number of IL-4 and interferon gamma-producing splenic cells were diminished in mice depleted of NK1.1(+) cells before the priming regime. Depletion of NK1.1(+) cells during the challenge period only did not influence pulmonary eosinophilic inflammation. CD1d1 mutant mice, deficient in NKT cells but with normal NK cells, developed lung tissue eosinophilia and allergen-specific IgE levels not different from those observed in wild-type mice. Mice deficient in gamma/delta T cells showed a mild attenuation of lung tissue eosinophilia in this model. Taken together, these findings suggest a critical role of NK cells, but not of NKT cells, for the development of allergen-induced airway inflammation, and that this effect of NK cells is exerted during the immunization. If translatable to humans, these data suggest that NK cells may be critically important for deciding whether allergic eosinophilic airway disease will develop. These observations are also compatible with a pathogenic role for the increased NK cell activity observed in human asthma.  相似文献   

15.
Among the different chemicals present in tobacco and tobacco smoke, 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanone (NNK) is the most potent carcinogen. In the present study the immunosuppressive effect of NNK was investigated in laboratory animals by analyzing the antitumor immune responses. Mice of B6C3F1 strain were treated with different doses of NNK by IP and assayed for natural killer cell activity by the lysis of 51Cr-labeled YAC-1 lymphoma cells. The control mice received physiological saline. The results showed a significant inhibition of natural killer cell activity in the spleen cells of mice treated with 100 or 250 mg/kg NNK. In contrast to the high-dose NNK group, treatment of mice with lower doses of NNK like 10 or 50 mg/kg had no significant effect on the natural killer cell activity. In addition to spleen, the natural killer cell activity was also suppressed in the hilar lymph nodes and lung cells of NNK-treated mice. The clearance of 125I labeled YAC-1 tumor cells was also reduced from the lungs of mice injected with NNK. Further, the metastatic potential of B16F10 melanoma cells was significantly higher, as evidenced by the increased lung tumor nodules in the high-dose NNK-treated mice. The decreased antitumor immune response in the carcinogen-treated mice was not due to a decrease of NK cells, because flow cytometric analysis indicated no change in the frequency of NK 1.1+ cells between control and treated animals. However, there was an increased plasma cortisone levels in the carcinogen-treated mice compared to control animals. Injection of mice with poly I:C or interleukin-12 was able to restore natural killer cell activity in the tobacco carcinogen-treated mice.  相似文献   

16.
The natural killer (NK) activity of lymphocytes from Wistar rats against mouse target cells wa studied using the 24 h microplate assay. The cytotoxic activity of NK cells was blocked in the presence of sera from adult rats and man, but not in the presence of sera from adult rats and man, but not in the presence of sera from cattle, rabbits, mice or newborn rats. The blocking serum factor was non-dialysable and inactivated by trypsin. In addition, data were obtained indicating that several continuous cell lines of mice differ significantly in sensitivity to Wistar rat spleen cells.  相似文献   

17.
In the current study, we investigated whether the naive, poly I:C or interleukin-2 (IL-2)-induced natural killer (NK)/lymphokine-activated killer (LAK) cells use perforin and/or Fas ligand (FasL) to mediated cytotoxicity. We correlated these findings with the ability of mice to reject syngeneic Fas+ and Fas- tumor cells either spontaneously or after IL-2 treatment. The spontaneous NK-cell-mediated cytotoxicity was primarily perforin based, whereas the poly I:C and IL-2-induced NK/LAK activity was both FasL and perforin dependent. L1210 Fas+ tumor targets were more sensitive than L1210 Fas- targets to poly I:C and IL-2-induced cytotoxicity in wild-type, gld/gld, and perforin knockout mice. When L1210 Fas+ and Fas- tumor cells were injected subcutaneously (sc) or intraperitoneally into syngeneic mice, Fas- tumor cells caused mortality earlier than Fas+ tumor cells. Also, approximately 20% of the mice injected sc with L1210 Fas+ tumor cells survived the challenge(>60 days), whereas all mice injected similarly with L1210 Fas- tumor cells died. When immunotherapy using IL-2 (10,000 U, three times/d for a week, followed by once/d for an additional week) was attempted in mice injected sc with tumor cells, IL-2 treatment was very effective against mice bearing L1210 Fas+ (40% survival) but not L1210 Fas- (0% survival) tumors. These data correlated with the finding that the LAK cells from IL-2-injected mice caused increased cytotoxicity against L1210 Fas+ when compared with L1210 Fas- targets. Also, L1210 Fas+ tumor-bearing mice showed increased tumor-specific cytotoxic T lymphocyte (CTL) activity when compared with those bearing L1210 Fas- tumor cells. Together our studies show for the first time that expression of Fas on tumor targets makes them more immunogenic as well as susceptible to CTL- and IL-2-induced LAK activity. The Fas+ tumor cells are also more responsive to immunotherapy with IL-2.  相似文献   

18.
19.
BACKGROUND: Controversy exists as to whether natural killer (NK)1.1+ cells additionally support cytotoxic T lymphocyte (CTL) generation. We have previously demonstrated that mice generate a strong in vitro xenospecific CTL response in local popliteal lymph nodes (LN) to footpad immunizations with large numbers of human tumor cells. METHODS: In vivo depletion of various LN subsets using cytotoxic monoclonal antibodies was used to determine their relative importance in stimulating xenospecific CD8+ CTL responses to human Jurkat tumor cells. Depletion of functional NK cells in vivo was evidenced by the relative lack of NK1.1+ cells and NK activity in the spleens and LN of anti-NK1.1 monoclonal antibody-treated mice. CONCLUSION: Depletion of LN subsets indicated that CD4+ T cells were critical in generating an effective xenospecific CD8+ CTL response, but also suggested that NK1.1+ cells play a significant additional accessory role in the development of mouse anti-human xenospecific CTL.  相似文献   

20.
Bone marrow transplantation (BMT) is currently used for the treatment of a variety of neoplastic diseases. However, significant obstacles limiting the efficacy of allogeneic BMT are the occurrence of graft-versus-host disease (GvHD) and tumor relapse. Natural killer (NK) cells exert a variety of immunologic and homoeostatic functions. We examined whether adoptive transfer of activated NK cells of donor type would prevent GvHD after allogeneic BMT in mice. Lethally irradiated C57BL/6 (H-2(b)) mice, were transplanted with MHC incompatible BALB/c (H-2(d)) bone marrow cells and spleen cells and rapidly succumbed to acute GvHD. In contrast, mice that also received activated NK cells of donor type exhibited significant increases in survival. In determining the mechanism by which the NK cells prevented GvHD, mice were concurrently treated with a neutralizing antibodies to the immunosuppressive cytokine TGFbeta. Anti-TGFbeta completely abrogated the protective effects of the activated donor NK cells indicating that TGFbeta plays an important role in the prevention of GvHD by NK cells. We then examined whether activated NK cells of donor type after allogeneic BMT would induce graft-versus-tumor (GvT) effects without GvHD in mice bearing a murine colon adenocarcinoma (MCA-38). 10 d after receiving the tumor, in which the mice had demonstrable lung metastases, recipients received an allogeneic BMT with or without activated NK cells. Administration of activated NK cells resulted in significant GvT effects after allogeneic BMT as evidenced by increases in median survival and fewer lung metastasis. No evidence of GVHD was detected compared with recipients receiving spleen cells alone which also developed fewer lung metastases but in which all had succumbed to GVHD. Thus, our findings suggest that adoptive immunotherapy using activated donor NK cells combined with allogeneic BMT inhibits GvHD and promotes GvT in advanced tumor-bearing mice. These results also suggest that GvT and GvHD can be dissociable phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号