首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aerodynamic theory has long been used to predict the power required for animal flight, but widely used models contain many simplifications. It has been difficult to ascertain how closely biological reality matches model predictions, largely because of the technical challenges of accurately measuring the power expended when an animal flies. We designed a study to measure flight speed-dependent aerodynamic power directly from the kinetic energy contained in the wake of bats flying in a wind tunnel. We compared these measurements with two theoretical predictions that have been used for several decades in diverse fields of vertebrate biology and to metabolic measurements from a previous study using the same individuals. A high-accuracy displaced laser sheet stereo particle image velocimetry experimental design measured the wake velocities in the Trefftz plane behind four bats flying over a range of speeds (3–7 m s−1). We computed the aerodynamic power contained in the wake using a novel interpolation method and compared these results with the power predicted by Pennycuick''s and Rayner''s models. The measured aerodynamic power falls between the two theoretical predictions, demonstrating that the models effectively predict the appropriate range of flight power, but the models do not accurately predict minimum power or maximum range speeds. Mechanical efficiency—the ratio of aerodynamic power output to metabolic power input—varied from 5.9% to 9.8% for the same individuals, changing with flight speed.  相似文献   

2.
The wingbeat kinematics and wake structure of a trained house martin in free, steady flight in a wind tunnel have been studied over a range of flight speeds, and compared and contrasted with similar measurements for a thrush nightingale and a pair of robins. The house martin has a higher aspect ratio (more slender) wing, and is a more obviously agile and aerobatic flyer, catching insects on the wing. The wingbeat is notable for the presence at higher flight speeds of a characteristic pause in the upstroke. The essential characteristics of the wing motions can be reconstructed with a simple two-frequency model derived from Fourier analysis. At slow speeds, the distribution of wake vorticity is more simple than for the other previously measured birds, and the upstroke does not contribute to weight support. The upstroke becomes gradually more significant as the flight speed increases, and although the vortex wake shows a signature of the pause phase, the global circulation measurements are otherwise in good agreement with surprisingly simple aerodynamic models, and with predictions across the different species, implying quite similar aerodynamic performance of the wing sections. The local Reynolds numbers of the wing sections are sufficiently low that the well-known instabilities of attached laminar flows over lifting surfaces, which are known to occur at two to three times this value, may not develop.  相似文献   

3.
Flying insects typically possess two pairs of wings. In beetles, the front pair has evolved into short, hardened structures, the elytra, which protect the second pair of wings and the abdomen. This allows beetles to exploit habitats that would otherwise cause damage to the wings and body. Many beetles fly with the elytra extended, suggesting that they influence aerodynamic performance, but little is known about their role in flight. Using quantitative measurements of the beetle''s wake, we show that the presence of the elytra increases vertical force production by approximately 40 per cent, indicating that they contribute to weight support. The wing-elytra combination creates a complex wake compared with previously studied animal wakes. At mid-downstroke, multiple vortices are visible behind each wing. These include a wingtip and an elytron vortex with the same sense of rotation, a body vortex and an additional vortex of the opposite sense of rotation. This latter vortex reflects a negative interaction between the wing and the elytron, resulting in a single wing span efficiency of approximately 0.77 at mid downstroke. This is lower than that found in birds and bats, suggesting that the extra weight support of the elytra comes at the price of reduced efficiency.  相似文献   

4.
Flight in animals is the result of aerodynamic forces generated as flight muscles drive the wings through air. Aerial performance is therefore limited by the efficiency with which momentum is imparted to the air, a property that can be measured using modern techniques. We measured the induced flow fields around six hawkmoth species flying tethered in a wind tunnel to assess span efficiency, ei, and from these measurements, determined the morphological and kinematic characters that predict efficient flight. The species were selected to represent a range in wingspan from 40 to 110 mm (2.75 times) and in mass from 0.2 to 1.5 g (7.5 times) but they were similar in their overall shape and their ecology. From high spatio-temporal resolution quantitative wake images, we extracted time-resolved downwash distributions behind the hawkmoths, calculating instantaneous values of ei throughout the wingbeat cycle as well as multi-wingbeat averages. Span efficiency correlated positively with normalized lift and negatively with advance ratio. Average span efficiencies for the moths ranged from 0.31 to 0.60 showing that the standard generic value of 0.83 used in previous studies of animal flight is not a suitable approximation of aerodynamic performance in insects.  相似文献   

5.
The wake of a freely flying common swift (Apus apus L.) is examined in a wind tunnel at three different flight speeds, 5.7, 7.7 and 9.9 m s−1. The wake of the bird is visualized using high-speed stereo digital particle image velocimetry (DPIV). Wake images are recorded in the transverse plane, perpendicular to the airflow. The wake of a swift has been studied previously using DPIV and recording wake images in the longitudinal plane, parallel to the airflow. The high-speed DPIV system allows for time-resolved wake sampling and the result shows features that were not discovered in the previous study, but there was approximately a 40 per cent vertical force deficit. As the earlier study also revealed, a pair of wingtip vortices are trailing behind the wingtips, but in addition, a pair of tail vortices and a pair of ‘wing root vortices’ are found that appear to originate from the wing/body junction. The existence of wing root vortices suggests that the two wings are not acting as a single wing, but are to some extent aerodynamically detached from each other. It is proposed that this is due to the body disrupting the lift distribution over the wing by generating less lift than the wings.  相似文献   

6.
To date, wake measurements using particle image velocimetry (PIV) of bats in flight have studied only three bat species, all fruit and nectar feeders. In this study, we present the first wake structure analysis for an insectivorous bat. Tadarida brasiliensis, the Brazilian free-tailed bat, is an aerial hunter that annually migrates long distances and also differs strikingly from the previously investigated species morphologically. We compare the aerodynamics of T. brasiliensis with those of other, frugivorous bats and with common swifts, Apus apus, a bird with wing morphology, kinematics and flight ecology similar to that of these bats. The comparison reveals that, for the range of speeds evaluated, the cyclical pattern of aerodynamic forces associated with a wingbeat shows more similarities between T. brasiliensis and A. apus than between T. brasiliensis and other frugivorous bats.  相似文献   

7.
Bats are unique among extant actively flying animals in having very flexible wings, controlled by multi-jointed fingers. This gives the potential for fine-tuned active control to optimize aerodynamic performance throughout the wingbeat and thus a more efficient flight. But how bat wing performance scales with size, morphology and ecology is not yet known. Here, we present time-resolved fluid wake data of two species of bats flying freely across a range of flight speeds using stereoscopic digital particle image velocimetry in a wind tunnel. From these data, we construct an average wake for each bat species and speed combination, which is used to estimate the flight forces throughout the wingbeat and resulting flight performance properties such as lift-to-drag ratio (L/D). The results show that the wake dynamics and flight performance of both bat species are similar, as was expected since both species operate at similar Reynolds numbers (Re) and Strouhal numbers (St). However, maximum L/D is achieved at a significant higher flight speed for the larger, highly mobile and migratory bat species than for the smaller non-migratory species. Although the flight performance of these bats may depend on a range of morphological and ecological factors, the differences in optimal flight speeds between the species could at least partly be explained by differences in their movement ecology.  相似文献   

8.
Qualitative comparison of bird and bat wakes has demonstrated significant differences in the structure of the far wake. Birds have been found to have a unified vortex wake of the two wings, while bats have a more complex wake with gradients in the circulation along the wingspan, and with each wing generating its own vortex structure. Here, we compare quantitative measures of the circulation in the far wake of three bird and one bat species. We find that bats have a significantly stronger normalized circulation of the start vortex than birds. We also find differences in how the circulation develops during the wingbeat as demonstrated by the ratio of the circulation of the dominant start vortex and the total circulation of the same sense. Birds show a more prominent change with changing flight speed and a relatively weaker start vortex at minimum power speed than bats. We also find that bats have a higher normalized wake loading based on the start vortex, indicating higher relative induced drag and therefore less efficient lift generation than birds. Our results thus indicate fundamental differences in the aerodynamics of bird and bat flight that will further our understanding of the evolution of vertebrate flight.  相似文献   

9.
A numerical study on the wake behind a square cylinder placed parallel to a wall has been made. The cylinder is considered to be within the boundary layer of the wall, so that the outside flow is taken to be due to uniform shear. Flow has been investigated in the laminar Reynolds number (based on the cylinder height) range. The interaction of wall boundary layer on the vortex shedding at Reynolds number up to 1400.0 has been investigated for cylinder to wall gap height 0.5 and 0.25 times the cylinder height. The gap flow between the cylinder and wall during a period of vortex shedding has been obtained. The governing unsteady Navier–Stokes equations are discretised through the finite volume method on staggered grid system. An algorithm SIMPLE has been used to compute the discretised equations iteratively. Our results show that at the gap height 0.5 times the cylinder height the vortex shedding occurs at a Strouhal number greater than for an isolated cylinder. Vortex shedding suppression occurs and wake becomes steady up to a certain value of Reynolds number at gap height 0.25 time the cylinder height. At higher Reynolds number the formation of a single row of negative vortices behind the cylinder when it is in close proximity to wall is noteworthy. Due to the shear, the drag experienced by the cylinder is found to decrease with the reduction of gap height.  相似文献   

10.
Many small passerines regularly fly slowly when catching prey, flying in cluttered environments or landing on a perch or nest. While flying slowly, passerines generate most of the flight forces during the downstroke, and have a ‘feathered upstroke’ during which they make their wing inactive by retracting it close to the body and by spreading the primary wing feathers. How this flight mode relates aerodynamically to the cruising flight and so-called ‘normal hovering’ as used in hummingbirds is not yet known. Here, we present time-resolved fluid dynamics data in combination with wingbeat kinematics data for three pied flycatchers flying across a range of speeds from near hovering to their calculated minimum power speed. Flycatchers are adapted to low speed flight, which they habitually use when catching insects on the wing. From the wake dynamics data, we constructed average wingbeat wakes and determined the time-resolved flight forces, the time-resolved downwash distributions and the resulting lift-to-drag ratios, span efficiencies and flap efficiencies. During the downstroke, slow-flying flycatchers generate a single-vortex loop wake, which is much more similar to that generated by birds at cruising flight speeds than it is to the double loop vortex wake in hovering hummingbirds. This wake structure results in a relatively high downwash behind the body, which can be explained by the relatively active tail in flycatchers. As a result of this, slow-flying flycatchers have a span efficiency which is similar to that of the birds in cruising flight and which can be assumed to be higher than in hovering hummingbirds. During the upstroke, the wings of slowly flying flycatchers generated no significant forces, but the body–tail configuration added 23 per cent to weight support. This is strikingly similar to the 25 per cent weight support generated by the wing upstroke in hovering hummingbirds. Thus, for slow-flying passerines, the upstroke cannot be regarded as inactive, and the tail may be of importance for flight efficiency and possibly manoeuvrability.  相似文献   

11.
Body-mounted accelerometers provide a new prospect for estimating power use in flying birds, as the signal varies with the two major kinematic determinants of aerodynamic power: wingbeat frequency and amplitude. Yet wingbeat frequency is sometimes used as a proxy for power output in isolation. There is, therefore, a need to understand which kinematic parameter birds vary and whether this is predicted by flight mode (e.g. accelerating, ascending/descending flight), speed or morphology. We investigate this using high-frequency acceleration data from (i) 14 species flying in the wild, (ii) two species flying in controlled conditions in a wind tunnel and (iii) a review of experimental and field studies. While wingbeat frequency and amplitude were positively correlated, R2 values were generally low, supporting the idea that parameters can vary independently. Indeed, birds were more likely to modulate wingbeat amplitude for more energy-demanding flight modes, including climbing and take-off. Nonetheless, the striking variability, even within species and flight types, highlights the complexity of describing the kinematic relationships, which appear sensitive to both the biological and physical context. Notwithstanding this, acceleration metrics that incorporate both kinematic parameters should be more robust proxies for power than wingbeat frequency alone.  相似文献   

12.
M Kiya 《Sadhana》1993,18(3-4):531-552
A three-dimensional vortex blob method was applied to calculate several vortex motions: the deformation of pseudo-elliptic vortex rings, the jet issuing from the pseudo-elliptic nozzle into flow of uniform velocity, the unsteady separated flow around a circular disk with an angle of attack, and the interaction of several vortex rings which approximately reproduced the Kolmogorov spectrum. In the first three cases, the viscous diffusion of vorticity was included. The pseudo-elliptic vortex rings experienced axis switching and split into a few deformed vortex rings. Rolling-up vortices in the pseudo-elliptic jet had a symmetric arrangement in the minor-axis plane and an antisymmetric arrangement in the major-axis plane in the developing region; further downstream, the vortices were arranged antisymmetrically in both planes. The wake behind the disk normal to the main flow reproduced the spiral and columnar modes of instability. A problem in the three-dimensional vortex method is that vorticity tends to diverge at a stage of evolution of the vortex motions. An approximate method of avoiding the divergence of vorticity is proposed.  相似文献   

13.
ABSTRACT

To avoid particle contamination in clean process production, unidirectional air flow with HEPA-filtered air is used, either in the entire room or partly in the critical process region (clean air zones), the purpose of this presentation is to describe a number of observations in unidirectional air flow and to discuss the interaction between air movements and the dispersion of airborne contaminants, it has been shown, by using smoke photography technique, that wake regions and vortex streets can easily be formed behind the working operator and objects. If a contaminant is emitted in the region of a vortex an accumulation can occur. It is important for the user to investigate that such vortices do not occur in the clean working zone.  相似文献   

14.
Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread.  相似文献   

15.
国内外对扑翼飞行的气动特性进行了大量研究,这些研究大多基于简谐扑动的刚性翼,然而大量观察发现鸟或昆虫飞行时,翅膀存在明显的柔性变形,这种变形对其气动性能具有显著的影响。该文针对一简化的二维柔性扑翼模型,采用数值求解N-S方程并耦合扑翼柔性变形方程的计算方法,研究了扑翼柔性变形对其气动性能的影响。结果显示扑翼的柔性变形改变了扑翼周围的涡结构,从而影响扑翼的气动性能;适当的柔性变形能延迟前缘涡的脱落,从而有效地改善扑翼的推进效率,但同时减弱了扑翼在低雷诺数环境中产生高升力的尾迹捕捉机制。  相似文献   

16.
Results are presented of an experimental investigation of the influence of polyoxyethylene and Guar gum admixtures on the magnitude of the Reynolds number corresponding to the origin of vortices in the wake behind transversely streamline slender cylinders of different diameters.Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 29, No. 6, pp. 965–969, December, 1975.  相似文献   

17.
To avoid particle contamination in clean process production, unidirectional air flow with HEPA-filtered air is used, either in the entire room or partly in the critical process region (clean air zones), the purpose of this presentation is to describe a number of observations in unidirectional air flow and to discuss the interaction between air movements and the dispersion of airborne contaminants, it has been shown, by using smoke photography technique, that wake regions and vortex streets can easily be formed behind the working operator and objects. If a contaminant is emitted in the region of a vortex an accumulation can occur. It is important for the user to investigate that such vortices do not occur in the clean working zone.  相似文献   

18.
T Matsui 《Sadhana》1981,4(2):239-257
An actual vortex in the Kármán vortex street downstream of a circular cylinder has a core of finite dimension which increases downstream. The circulation of the vortex is nearly constant. The ratiob/a which is 0.281 according to the theory of Kármán, grows from 0.2 to 0.4 in the near wake. In the flow about a circular cylinder rotating in a uniform flow, a Kármán vortex street, Görtler-type vortices and Taylor vortices are generated at the same time. In the flow about a circular cylinder impulsively started with a constant velocity, the primary twin vortices behind the cylinder induce secondary twin vortices near the separation point. At the beginning of the motion, the separation does not occur even though a reverse flow is observed in the boundary layer. Mutual slip-through of a pair of vortex rings was achieved by increasing the Reynolds number. A vortex ring rebounds from a plane surface due to the separation of the flow on the surface induced by the vortex ring, and the secondary vortex ring is formed from the separated shear layer.  相似文献   

19.
Hovering means stationary flight at zero net forward speed, which can be achieved by animals through muscle powered flapping flight. Small bats capable of hovering typically do so with a downstroke in an inclined stroke plane, and with an aerodynamically active outer wing during the upstroke. The magnitude and time history of aerodynamic forces should be reflected by vorticity shed into the wake. We thus expect hovering bats to generate a characteristic wake, but this has until now never been studied. Here we trained nectar-feeding bats, Leptonycteris yerbabuenae, to hover at a feeder and using time-resolved stereoscopic particle image velocimetry in conjunction with high-speed kinematic analysis we show that hovering nectar-feeding bats produce a series of bilateral stacked vortex loops. Vortex visualizations suggest that the downstroke produces the majority of the weight support, but that the upstroke contributes positively to the lift production. However, the relative contributions from downstroke and upstroke could not be determined on the basis of the wake, because wake elements from down- and upstroke mix and interact. We also use a modified actuator disc model to estimate lift force, power and flap efficiency. Based on our quantitative wake-induced velocities, the model accounts for weight support well (108%). Estimates of aerodynamic efficiency suggest hovering flight is less efficient than forward flapping flight, while the overall energy conversion efficiency (mechanical power output/metabolic power) was estimated at 13%.  相似文献   

20.
采用实验研究的方法,首次研究了某型空调器室外机组防护网对气动噪声的影响.测量发现,如果防护网钢丝后气流脱落涡频率在1000Hz附近,会引起空调器室外机组的气动噪声明显的增加.因此,空调器室外机组设计过程中,控制风扇出口气流速度与防护网钢丝直径的匹配,是降低空调器室外机组噪声的一种有效手段.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号