首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
2D-C/SiC缺口试样的拉-拉疲劳损伤   总被引:1,自引:0,他引:1  
侯军涛  乔生儒  韩栋  吴小军  李玫 《材料导报》2005,19(11):140-143
研究了二维正交编织C/SiC双边对称圆弧缺口试样室温和高温真空的拉拉疲劳行为,正弦波疲劳应力比R=0.1,频率60Hz,循环基数106次.循环到规定周次停机,测量试样的共振频率、电阻,并进行SEM观察.结果表明,2D-C/SiC复合材料缺口试样拉-拉疲劳的S-N曲线非常平坦,其疲劳极限是同温度下缺口试样拉伸强度的80%~90%,光滑试样和缺口试样的疲劳极限比值与理论应力集中系数基本相同.缺口试样在疲劳过程中,电阻表征损伤与模量表征损伤的规律基本一致.在疲劳试验初期阶段,缺口附近损伤发展很快,主要表现为产生大量与加载方向垂直的裂纹,随着疲劳次数的增加,损伤发展减缓,但损伤形式逐渐增多,缺口附近与加载方向垂直的裂纹数量明显多于平行加载方向的裂纹数.讨论了电阻表征损伤和模量表征损伤之间的关系.  相似文献   

2.
基于单调和循环加卸载实验,测试获得了不同加载过程中2 D-C/SiC复合材料在纤维束轴向方向上的泊松曲线,并对比分析了轴向损伤演化进程对材料泊松效应的影响.结果表明,在拉伸损伤加剧过程中,材料表现出显著的负泊松比行为;在加载损伤停滞状态下,材料则表现为近似线性正泊松比行为.加载过程中材料的泊松效应随着损伤程度的增加而不断减弱.结合扫描电镜断口结果分析可知,拉伸损伤加剧过程中材料内部沿加载方向上不断产生的基体开裂和界面脱粘损伤引起的材料沿垂直加载方向上的伸长变形,大于并掩盖了拉伸载荷在垂直加载方向上引起的弹性收缩变形,是导致2 D-C/SiC复合材料表现出显著负泊松比行为的主要原因;加载损伤加剧过程中产生的大量开裂损伤导致的材料整体连续性的降低是导致其泊松效应不断减弱的主要影响机制.  相似文献   

3.
高温热曝露对3D-C/SiC复合材料弯曲性能的影响   总被引:1,自引:0,他引:1  
3D-C/SiC复合材料试样在空气介质中600℃、900℃和1300℃热曝露不同时间后,采用三点弯曲法测试了以室温弯曲弹性模量表征的损伤变化规律,并进行了SEM和EDS分析.结果表明:3D-C/SiC在热曝露15 h后,损伤变化可分为急剧上升(阶段Ⅰ)和平稳上升(阶段Ⅱ)两个阶段.阶段Ⅰ归因于炭纤维和炭层界面在空气中的直接氧化,阶段Ⅱ由复合材料内部氧的扩散所致.在复合材料制备过程的冷却阶段,因基体和炭纤维热膨胀系数不同所产生的基体微裂纹提供了氧化反应的表面与氧扩散的途径.在同一热曝露时间下,损伤随温度的上升而减少的原由可能是由于高温下裂纹收缩导致氧化表面减少,并降低氧向复合材料内扩散所致.  相似文献   

4.
通过对2D-C/SiC复合材料试件进行不同偏轴角度的拉伸实验,研究了偏轴角度对材料拉伸力学特性的影响。通过应变片分别测得了材料加载方向和纤维束方向上的应力-应变行为,对比分析了偏轴角度对上述应力-应变行为的影响;并结合试件断口扫描电镜照片,阐释了纤维束方向上拉伸和剪切损伤间的相互耦合效应。实验结果表明,材料的拉伸模量和强度随偏轴角度的增大出现明显下降;材料纤维束方向上的拉伸损伤和剪切损伤具有显著的相互促进作用。最后,以材料0°拉伸和45°拉伸实验数据为基础,建立了材料的偏轴拉伸应力-应变行为预测模型,模型预测结果与实验结果吻合较好。  相似文献   

5.
真空条件对2D—C/SiC复合材料在1300℃和1500℃进行了高温拉伸蠕变试验,蠕变进行到0、0.5h、2h、10h、25h、50h中断试验,用SEM观察表面形貌,用盒维数法计算试样表面裂纹的分形维数;同时测量试样的弹性模量。结果表明,由于2D—C/SiC特有的蠕变损伤形式,所形成的损伤尺度都较短,其分形维数介于0~1之间。用分形维数和弹性模量衰减都可表征2D—C/SiC的蠕变损伤,两种损伤参量所描述的蠕变损伤总的发展趋势基本一致,即蠕变开始阶段损伤发展较快,随后进入缓慢发展的第二阶段。在第二阶段中,分形维数表征的损伤持续单调增加;而用弹性模量衰减表征的损伤在该阶段出现先下降随后升高的现象。以基体裂纹为主要损伤形式的条件下。分形维数主要反映蠕变试样局部的损伤,而弹性模量衰减反映的是蠕变试样整体的损伤。  相似文献   

6.
纤维束内部孔洞对2.5D-C/SiC复合材料弹性性能的影响研究   总被引:1,自引:0,他引:1  
常岩军  张克实  矫桂琼  王波 《工程力学》2011,(3):230-233,239
采用Mori-Tanaka方法分两步计算了含孔洞C/SiC纤维束的弹性常数,并进一步考虑经向纤维束在空间上的不完全连续,给出了更为准确的2.5D-C/SiC复合材料弹性性能计算模型.分析了纤维束内部孔洞形状及体积含量对2.5D-C/SiC复合材料弹性性能的影响,结果表明纤维束内部孔洞的形状对材料弹性性能影响较小,而纤维...  相似文献   

7.
通过2.5D-C/SiC陶瓷基复合材料的面内拉伸试验, 研究了材料在拉伸载荷作用下的力学性能和损伤演化过程, 建立了2.5D-C/SiC复合材料的应力型和应变型拉伸损伤演化模型. 结果表明, 材料沿纵向和横向的拉伸应力-应变曲线相似, 损伤过程基本相同. 对应于拉伸应力应变曲线的三个特征切线模量, 面内拉伸的损伤演化过程可以分为三个阶段: 初始损伤阶段、损伤加速阶段和损伤减缓阶段. 由应力型损伤演化模型可以推导出三个损伤阶段的两个特征应力, 其中第一特征应力可以作为工程比例极限的参考值.  相似文献   

8.
采用层次聚类及基于改进遗传算法的无监督模式识别方法,对2D-C/SiC复合材料常温拉伸试验过程的声发射数据进行分析,结合试样断口的扫描电镜(SEM)照片,得到拉伸过程中5类损伤模式及其典型声发射特征参数。通过对各类损伤的能量分布、累计事件数和累计能量的分析,研究C/SiC复合材料的损伤演化过程,发现其过程可分为基体微裂纹和界面失效为主的初始损伤阶段、基体微裂纹停滞导致层间剥离及纤维失效占主导地位的裂纹饱和阶段、基体长裂纹和界面失效为主的损伤积累发展阶段和纤维束大量失效的宏观断裂阶段。  相似文献   

9.
2D-C/SiC高速深磨磨削特性及去除机制   总被引:1,自引:0,他引:1       下载免费PDF全文
采用树脂结合剂金刚石砂轮, 通过对2D-C/SiC复合材料高速深磨磨削加工, 并对磨削表面形貌和亚表面损伤进行了观察。提出了2D-C/SiC摩擦层(表面)的磨削力理论公式, 讨论了磨削加工用量对磨削力和磨削力比的影响。实验结果表明, 2D-C/SiC复合材料的高速深磨材料去除机制与其自身的微观结构相关, 既不同于塑性材料, 也不同于普通脆性材料, 而是以脆性断裂去除为主。  相似文献   

10.
黄喜鹏  王波  常杰 《复合材料学报》2021,38(5):1517-1525
基于Christoffel方程,运用复合材料刚度矩阵与弹性常数间的关系,将正交各向异性模型运用于2D-C/SiC复合材料的声学特性中,得到材料声速的表达式.通过循环加卸载试验测量了 2D-C/SiC复合材料整个拉伸过程中不同应力水平处的声速变化,研究了声速对2D-C/SiC复合材料的损伤表征.研究发现,随着应力水平的不...  相似文献   

11.
研究了采用化学气相渗透工艺制备2D-SiCf/SiC复合材料的真空蠕变性能, 蠕变温度为 1200、1300和1400 ℃, 应力水平范围为100~140 MPa。用扫描电子显微镜(SEM)和高分辨透射电子显微镜(TEM)分别观察分析了2D-SiCf/SiC复合材料的蠕变断口形貌和微观结构。结果表明, 2D-SiCf/SiC复合材料的主要蠕变损伤模式包括基体开裂、界面脱粘和纤维蠕变。桥接裂纹的纤维发生蠕变并促进了基体裂纹的张开、位移增大, 进一步导致复合材料蠕变断裂, 在复合材料蠕变过程中起决定性作用。2D-SiCf/SiC复合材料的蠕变性能与SiC纤维微观结构的稳定性密切相关。在1200 ℃/100 MPa时, 纤维晶粒没有长大, 复合材料的蠕变断裂时间大于200 h; 蠕变温度为1400 ℃时, 纤维晶粒明显长大, 2D-SiCf/SiC复合材料蠕变断裂时间缩短至8.6 h, 稳态蠕变速率增大了三个数量级。  相似文献   

12.
2D-C/SiC复合材料开孔件拉伸强度有限元计算   总被引:1,自引:0,他引:1       下载免费PDF全文
对2D-C/SiC复合材料开孔试件最小净截面图像进行观测,获得试件材料内部宏观孔洞的分布形态及密度分布梯度。通过对2D-C/SiC复合材料拉伸应力-应变行为进行非线性拟合,并利用理论模型计算与实验验证相结合的方法得到了材料密度与其拉伸模量和强度的关系,描述了不同密度2D-C/SiC复合材料的拉伸应力-应变行为。在此基础上,将制备工艺造成的试件材料密度分布的非均匀性和材料拉伸应力-应变行为的非线性引入到有限元模型中,进行开孔试件拉伸剩余强度模拟计算,预测结果与实验结果吻合较好。  相似文献   

13.
To reveal the shear properties of SiC matrix composites, interlaminar shear strength (ILSS) of three kinds of silicon carbide matrix composites was investigated by compression of the double notched shear specimen (DNS) at 900 °C in air. The investigated composites included a woven plain carbon fiber reinforced silicon carbide composite (2D-C/SiC), a two-and-a-half-dimensional carbon fiber-reinforced silicon carbide composite (2.5D-C/SiC) and a woven plain silicon carbon fiber reinforced silicon carbide composite (2D-SiC/SiC). A scanning electron microscope was employed to observe the microstructure and fracture morphologies. It can be found that the fiber type and reinforcement architecture have significant impacts on the ILSS of the SiC matrix composites. Great anisotropy of ILSS can be found for 2.5D-C/SiC because of the different fracture resistance of the warp fibers. Larger ILSS can be obtained when the specimens was loaded along the weft direction. In addition, the SiC fibers could enhance the ILSS, compared with carbon fibers. The improvement is attributed to the higher oxidation resistance of SiC fibers and the similar thermal expansion coefficients between the matrix and the fibers.  相似文献   

14.
A Monte Carlo model of the effects of fiber creep in a 0°/90° plain weave ceramic-grade Nicalon reinforced SiC composite has been developed. Creep degradation of fibers was predicted to result in stress dependent premature failure of woven ceramic matrix composites, and that premature failure was modeled using a power-law. A power-law exponent of 3.1 ± 0.1 was predicted. The power-law exponent was predicted to be independent of initial crack size for crack length to specimen width ratios of 0.02, 0.10, 0.25, and 0.50. The power-law exponent was also predicted to be independent of the matrix to fiber strength ratio for ratios from 0.25 to 1.0. Premature failure in the 90° (transverse) tows resulted in premature failure of the composite for low values of the matrix to fiber strength ratio (less than 0.75), and decreased creep life was predicted for decreased matrix to fiber strength ratio. For a matrix to fiber strength ratio of 1.0, the creep life of the woven composite was predicted to be equivalent to a unidirectional composite. At small initial crack lengths, a 10% improvement in the creep life was predicted for a reduction in the matrix to fiber strength ratio from 1.0 to 0.75. This improvement was related to the formation of microcracks in the 90° tows and shielding of the macrocrack tip from accelerated creep damage. This improvement in the predicted creep life at a matrix to fiber strength ratio of 0.75 was predicted to be independent of applied stress. However, improvement of the creep life was not predicted to occur for larger values of initial crack length.  相似文献   

15.
王奇志  林慧星  许泉 《复合材料学报》2018,35(12):3423-3432
基于二维编织C/SiC复合材料的细观结构,建立了碳纤维丝/热解碳界面/SiC基体和纤维束/表层SiC基体两种尺度下的细观单胞模型,通过有限元方法计算碳纤维丝/热解碳界面/SiC基体模型的等效弹性常数和强度,然后代入纤维束/表层SiC基体模型中计算,并引入Tsai-Wu失效准则,考虑不同失效模式的损伤,建立了二维编织C/SiC复合材料的渐进损伤模型,模拟了其偏轴拉伸应力-应变行为。针对该模型,阐述了二维编织C/SiC复合材料单胞模型在复杂应力状态下其纤维束的损伤过程。数值模拟结果与实验数据吻合较好,验证了模型的有效性,为该种材料的力学性能分析提供了一种有效方法。  相似文献   

16.
The creep response of SiC fiber-reinforced Si3N4 composites has been measured using four-point flexural loading at temperatures of 1200–1450°C and stress levels ranging from 250 to 350 MPa. Parameters characterizing the stress and temperature dependence of flexural creep strain rates were determined. A numerical analysis was also performed to estimate the power-law creep parameters for tensile and compressive creep from the bend test data. The incorpoporation of SiC fiber into Si3N4 resulted in substantial improvements in creep resistance even at very high stresses. The steady-state creep deformation mechanism, determined to be subcritical crack growth in the unreinforced matrix, changed to a mechanism in the composites of repeated matrix stress relaxation-fiber rupture-load dispersion by the matrix. Multiple fiber fracture rather than multiple matrix cracking resulted. The tertiary creep in the composite resulted from the rapid growth of the microcracks which initiated from the fiber rupture sites. Fiber strength, matrix cracking stress and interfacial shear strength have been identified as the key microstructural parameters controlling the creep behavior of the composite.  相似文献   

17.
为了研究三维编织SiC/SiC复合材料损伤机制,开展了室温条件下的单调拉伸和三点弯曲试验。实验前,利用CT扫描手段,明确了三维编织SiC/SiC复合材料试样的编织组织形态。对拉伸和三点弯曲试样的微观分析表明:原生孔洞和微裂纹导致了材料在单调拉伸过程中形成局部应力集中,随着拉伸载荷的增大,基体的横向开裂和纤维束间纵向层间裂纹逐渐演化形成纤维内部裂纹,导致材料最终的脆性断裂失效;在三点弯载荷作用下,表现为剪切、拉压共生的多耦合破坏模式,拉应力一侧首先发生失效,随后在中性面处发生剪切破坏,紧接着失效迅速向上下两侧扩展,直至截面在整个厚度方向发生失效;断口与纤维束的走向相关性很大,裂纹基本上沿着纤维束之间的界面进行扩展,导致最终失效未发生在理论失效位置处。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号