首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the appearance of cloud computing, computing capacity has been charged as a service through the network. The optimal scheduling of computing resources (OSCR) over the network is a core part for a cloud service center. With the coming of virtualization, the OSCR problem has become more complex than ever. Previous work, either on model building or scheduling algorithms, can no longer offer us a satisfactory resolution. In this paper, a more comprehensive and accurate model for OSCR is formulated. In this model, the cloud computing environment is considered to be highly heterogeneous with processors of uncertain loading information. Along with makespan, the energy consumption is considered as one of the optimization objectives from both economic and ecological perspectives. To provide more attentive services, the model seeks to find Pareto solutions for this bi-objective optimization problem. On the basis of classic multi-objective genetic algorithm, a case library and Pareto solution based hybrid Genetic Algorithm (CLPS-GA) is proposed to solve the model. The major components of CLPS-GA include a multi-parent crossover operator (MPCO), a two-stage algorithm structure, and a case library. Experimental results have verified the effectiveness of CLPS-GA in terms of convergence, stability, and solution diversity.  相似文献   

2.
3.
任务调度在云计算中占有重要地位,是影响云计算性能的关键因素,被证明是NP问题。启发式算法是解决该问题的最有效方法之一,针对近年来出现的一种新型启发式算法--BBO算法展开研究,由于BBO算法在求解过程中收敛速度较慢,因此结合粒子群算法提出了一种新型算法的任务调度算法--HMBBO,并结合Cloudsim云仿真平台,进行了以Makespan为目标函数的比对实验。实验结果表明,与几种经典的启发式算法相比,HMBBO算法具有寻优能力强、收敛速度快、求解质量高的特点,为解决云计算环境中任务调度问题提供了一种新思路。  相似文献   

4.
In Infrastructure-as-a-Service (IaaS) cloud computing, computational resources are provided to remote users in the form of leases. For a cloud user, he/she can request multiple cloud services simultaneously. In this case, parallel processing in the cloud system can improve the performance. When applying parallel processing in cloud computing, it is necessary to implement a mechanism to allocate resource and schedule the execution order of tasks. Furthermore, a resource optimization mechanism with preemptable task execution can increase the utilization of clouds. In this paper, we propose two online dynamic resource allocation algorithms for the IaaS cloud system with preemptable tasks. Our algorithms adjust the resource allocation dynamically based on the updated information of the actual task executions. And the experimental results show that our algorithms can significantly improve the performance in the situation where resource contention is fierce.  相似文献   

5.
实现网格计算的一个重要目的在于实现地理分布、异构资源的统一描述方法,提供用户虚拟的统一资源界面,并将用户提出的服务要求透明、动态地分配给最适应的资源上执行。针对目前任务调度的应用现状,提出了一种既能使资源负载均衡又能充分利用系统资源的并行克隆遗传算法,该启发式算法能显著地降低资源最优分配中的计算复杂度,使其能满足实时调度的需要。实验结果表明这种算法优于其他调度算法。  相似文献   

6.
为提高混合遗传算法的计算效率和求解质量,提出一个并行混合遗传算法框架。该框架主要由遗传算法、小生境操作和单纯形3部分组成,遗传算法和小生境操作采用串行执行方式,单纯形采用分布式并行执行方式。分布式并行计算环境由4台计算机通过交换机连接构成,并设计了一个动态任务调度方案。一个典型工程算例验证了新算法的有效性,并且在分布式并行环境下取得了较好的加速比和并行效率。  相似文献   

7.
This paper presents a reactive scheduling approach for flexible manufacturing systems, which integrates the overall energy consumption of the production. This work is justified by the growing needs of manufacturers for energy-aware control, due to new important environmental criteria, which holds true in the context of high reactivity. It makes production hard to predict. The proposed reactive scheduling model is based on potential fields. In this model, resources that sense the intentions from products are able to switch to standby mode to avoid useless energy consumption and emit fields to attract products. Simulations are provided, featuring three indicators: makespan, overall energy consumption and the number of resource switches. Real experiments were carried out to illustrate the feasibility of the approach on a real system and validate the simulation results.  相似文献   

8.
如何进一步实现云计算环境下的资源利用最大化是目前研究的热点.建立云计算环境下的资源分配模型,云计算资源调度使用蝙蝠算法,同时引入膜计算概念,提出一种基于膜计算的蝙蝠算法,将膜系统内部分解为主膜和辅助膜,在辅助膜内进行蝙蝠的个体局部寻优,将优化后的个体传送到主膜间进行全局优化,从而达到了云计算资源优化分配要求.通过CloudSim平台与其他算法进行仿真对比表明算法提高了云计算环境下的系统处理时间和效率,使得云计算环境下的资源分配更加合理.  相似文献   

9.
This paper presents a novel, two-level mixed-integer programming model of scheduling N jobs on M parallel machines that minimizes bi-objectives, namely the number of tardy jobs and the total completion time of all the jobs. The proposed model considers unrelated parallel machines. The jobs have non-identical due dates and ready times, and there are some precedence relations between them. Furthermore, sequence-dependent setup times, which are included in the proposed model, may be different for each machine depending on their characteristics. Obtaining an optimal solution for this type of complex, large-sized problem in reasonable computational time using traditional approaches or optimization tools is extremely difficult. This paper proposes an efficient genetic algorithm (GA) to solve the bi-objective parallel machine scheduling problem. The performance of the presented model and the proposed GA is verified by a number of numerical experiments. The related results show the effectiveness of the proposed model and GA for small and large-sized problems.  相似文献   

10.
针对更实际的异构集群计算环境,充分考虑处理机具有不同的计算速度、通信能力和存储容量的特性,通过允许计算和通信操作重叠执行,采取多次并行分配计算任务的方法,设计一种可分负载多轮调度算法。实验结果表明,该算法不但能获得与均匀多轮调度(UMR)算法相当的渐近最优调度时间长度,并且能够处理更大规模的应用负载,实用性更强。  相似文献   

11.
Volunteer computing systems offer high computing power to the scientific communities to run large data intensive scientific workflows. However, these computing environments provide the best effort infrastructure to execute high performance jobs. This work aims to schedule scientific and data intensive workflows on hybrid of the volunteer computing system and Cloud resources to enhance the utilization of these environments and increase the percentage of workflow that meets the deadline. The proposed workflow scheduling system partitions a workflow into sub-workflows to minimize data dependencies among the sub-workflows. Then these sub-workflows are scheduled to distribute on volunteer resources according to the proximity of resources and the load balancing policy. The execution time of each sub-workflow on the selected volunteer resources is estimated in this phase. If any of the sub-workflows misses the sub-deadline due to the large waiting time, we consider re-scheduling of this sub-workflow into the public Cloud resources. This re-scheduling improves the system performance by increasing the percentage of workflows that meet the deadline. The proposed Cloud-aware data intensive scheduling algorithm increases the percentage of workflow that meet the deadline with a factor of 75% in average with respect to the execution of workflows on the volunteer resources.  相似文献   

12.
如何对任务进行高效合理的调度是云计算需要解决的关键问题之一,针对云计算的编程模型框架,在传统粒子群优化算法(PSO)的基础上,提出了一种具有双适应度的粒子群算法(DFPSO)。通过该算法不但能找到任务总完成时间较短的调度结果,而且此调度结果的任务平均完成时间也较短。仿真分析结果表明,在相同的条件设置下,该算法优于传统的粒子群优化算法,当任务数量增多时,其综合调度性能优点明显。  相似文献   

13.
Task scheduling is a fundamental issue in achieving high efficiency in cloud computing. However, it is a big challenge for efficient scheduling algorithm design and implementation (as general scheduling problem is NP‐complete). Most existing task‐scheduling methods of cloud computing only consider task resource requirements for CPU and memory, without considering bandwidth requirements. In order to obtain better performance, in this paper, we propose a bandwidth‐aware algorithm for divisible task scheduling in cloud‐computing environments. A nonlinear programming model for the divisible task‐scheduling problem under the bounded multi‐port model is presented. By solving this model, the optimized allocation scheme that determines proper number of tasks assigned to each virtual resource node is obtained. On the basis of the optimized allocation scheme, a heuristic algorithm for divisible load scheduling, called bandwidth‐aware task‐scheduling (BATS) algorithm, is proposed. The performance of algorithm is evaluated using CloudSim toolkit. Experimental result shows that, compared with the fair‐based task‐scheduling algorithm, the bandwidth‐only task‐scheduling algorithm, and the computation‐only task‐scheduling algorithm, the proposed algorithm (BATS) has better performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
针对在特殊工艺约束下,非等同并行多机总完工时间最小和总拖后惩罚最小双目标调度问题(BOSP),设计了一个双目标调度模型,进而构造了一个基于向量组编码的遗传算法。此算法的编码方法简单,能有效地反映实际调度方案,收敛速度快。同时为了更好地适应调度实时性和解大型此类问题的需要,在基于遗传算法自然并行性特点的基础上,实现了主从式控制网络模式下并行遗传算法。仿真结果表明,此算法是有效的,优于普通的遗传算法,具有较高的并行性,并能适用于解大型此类调度问题。  相似文献   

15.
How to reduce power consumption of data centers has received worldwide attention. By combining the energy-aware data placement policy and locality-aware multi-job scheduling scheme, we propose a new multi-objective bi-level programming model based on MapReduce to improve the energy efficiency of servers. First, the variation of energy consumption with the performance of servers is taken into account; second, data locality can be adjusted dynamically according to current network state; last but not least, considering that task-scheduling strategies depend directly on data placement policies, we formulate the problem as an integer bi-level programming model. In order to solve the model efficiently, specific-design encoding and decoding methods are introduced. Based on these, a new effective multi-objective genetic algorithm based on MOEA/D is proposed. As there are usually tens of thousands of tasks to be scheduled in the cloud, this is a large-scale optimization problem and a local search operator is designed to accelerate convergent speed of the proposed algorithm. Finally, numerical experiments indicate the effectiveness of the proposed model and algorithm.  相似文献   

16.
17.
云计算通常需要处理大量的计算任务,任务调度策略在决定云计算效率方面起着关键作用。如何合理地分配计算资源,有效地调度任务运行,使所有任务运行完成所需的时间较短、成本较小是个重要的问题。提出一种考虑时间-成本约束的遗传算法(TCGA),通过此算法调度产生的结果不仅能使任务完成所需的时间较短,而且成本较小。通过实验,将TCGA与考虑时间约束的遗传算法(TGA)、考虑成本约束的遗传算法(CGA)进行比较,实验结果表明,该算法是云计算中一种有效的任务调度算法。  相似文献   

18.
云计算环境下基于遗传蚁群算法的任务调度研究   总被引:1,自引:0,他引:1  
对云计算中任务调度进行了研究,针对云计算的编程模型框架,提出一种融合遗传算法与蚁群算法的混合调度算法。在该求解方法中,遗传算法采用任务-资源的间接编码方式,每条染色体代表一种具体调度方案;选取任务平均完成时间作为适应度函数,再利用遗传算法生成的优化解,初始化蚁群信息素分布。既克服了蚁群算法初期信息素缺乏,导致求解速度慢的问题,又充分利用遗传算法的快速随机全局搜索能力和蚁群算法能模拟资源负载情况的优势。通过仿真实验将该算法和遗传算法进行比较,实验结果表明,该算法是一种云计算环境下有效的任务调度算法。  相似文献   

19.
Although various strategies have been developed for scheduling parallel applications with independent tasks, very little work exists for scheduling tightly coupled parallel applications on cluster environments. In this paper, we compare four different strategies based on performance models of tightly coupled parallel applications for scheduling the applications on clusters. In addition to algorithms based on existing popular optimization techniques, we also propose a new algorithm called Box Elimination that searches the space of performance model parameters to determine the best schedule of machines. By means of real and simulation experiments, we evaluated the algorithms on single cluster and multi‐cluster setups. We show that our Box Elimination algorithm generates up to 80% more efficient schedules than other algorithms. We also show that the execution times of the schedules produced by our algorithm are more robust against the performance modeling errors. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Cloud computing is a relatively new concept in the distributed systems and is widely accepted as a new solution for high performance and distributed computing. Its dynamisms in providing virtual resources for organisations and laboratories and its pay-per-use policy make it very popular. A workflow models a process consisting of a series of steps that shape an application. Workflow scheduling is the method for assigning each workflow task to a processing resource in a way that specific workflow rules are satisfied. Some scheduling algorithms for workflows may assume some quality of service parameter such as cost and deadline. Some efforts have been done on workflow scheduling on cloud computing environments with different service level agreements. But most of them suffer from low speed. Here, we introduce a new hybrid heuristic algorithm based on particle swarm optimisation (PSO) and gravitation search algorithms. The proposed algorithm, in addition to processing cost and transfer cost, takes deadline limitations into account. The proposed workflow scheduling approach can be used by both end-users and utility providers. The CloudSim toolkit is used as a cloud environment simulator and the Amazon EC2 pricing is the reference pricing used. Our experimental result shows about 70% cost reduction, in comparison to non-heuristic implementations, 30% cost reduction in comparison to PSO, 30% cost reduction in comparison to gravitational search algorithm and 50% cost reduction in comparison to hybrid genetic-gravitational algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号