首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a structured document, Braille is the most common means of reading and study for visually handicapped people. The need for converting Braille documents into a computer-readable format has motivated research into the implementation of Braille recognition systems. The main theme of this research is to propose robust probabilistic approaches to different steps of Braille Recognition. The method is meant to be very general in terms of being independent of those parameters of the Braille document such as skewness, scale, and spacing of the page, lines, and characters. For a given Braille document, a statistical method is proposed for estimating the scaling, spacing, and skewness parameters, whereby the detected dots of the Braille document are modeled using a parameterized probability density function. Skewness, scaling, and line spacing are estimated as a solution of a maximum-likelihood (ML) problem, which is solved using expectation maximization. Based on those parameters, each line of the Braille document is extracted, and each of three rows of individual lines is separated based on the vertical projection of the Braille dots. Finally, a scale-independent automatic document gridding procedure is proposed for dot localization and character detection based on a hidden Markov model.  相似文献   

2.
Finger Braille is one of tactual communication media of deaf-blind people. Deaf-blind people who are skilled in Finger Braille can catch up with speech conversation, because of prosody of Finger Braille. Features of prosody are: (1) characters at the end of clauses are dotted long; (2) characters of voiced sounds and double consonants are dotted shortly. In this paper, we designed three teaching patterns which taught prosody of Finger Braille (dot conditions about duration of dotting). Teaching pattern 1 indicated a dot pattern with colored solid background. Teaching pattern 2 indicated a dot pattern with colored empty background. Teaching pattern 3 indicated a dot pattern with colored arrow (long or short). Every teaching pattern includes 6 colors (red, orange, yellow, green, blue and purple). In the questionnaire, the yellow pattern of teaching pattern 3 was selected as the most visible pattern. In the evaluation experiment, the yellow pattern of teaching pattern 3, the red and purple patterns of teaching pattern 1 (the least visible pattern) and the existing patterns without teaching of dot conditions are compared. As a result, every subject could dot long at the end of clauses and could dot shortly at the voiced sounds and double consonants. The answers of questionnaire indicated that the yellow pattern of teaching pattern 3 was also the most visible and easiest teaching pattern.  相似文献   

3.
We introduce a novel integrable and electrostatic microvalve for the purpose of enabling a pneumatic refreshable Braille display system (RBDS). Physical design parameters of the microvalve such as orifice size, beam length, number of beams and beam profile are experimentally explored and found promising for use with the RBDS. Particularly, one design with an orifice of 70 /spl mu/m/spl times/70 /spl mu/m, beam length of 665 /spl mu/m, and beam count of 20 is electrostatically closed against a differential pressure of 82.7 kPa with an applied voltage of 68 V-rms. Also introduced is a steady-state mechanical model of the microvalve established on a coupled solution of fluid and solid domains. The model and experimental test results have been used to calculate the unknown discharge coefficient, elastic deflection, and entrance pressure. The model reveals that some of the designs have remarkably low discharge coefficient and entrance pressure, implying that pressure loss occurs mostly through and around the inlet port even at fairly large supply pressures. Experimental observations concerning the practical use of the microvalve are discussed.  相似文献   

4.
《Applied ergonomics》1975,6(4):237-238
  相似文献   

5.
The high cost of braille output devices has prevented their wide use among the visually handicapped. Here, a much cheaper device is implemented.  相似文献   

6.
An 8-pixel micromachined quartz crystal resonator array with a fundamental resonance frequency of 66 MHz has been designed, fabricated, and tested. A compact impedance-spectrum-analyzer electronic interface has been developed and combined with the quartz resonator array to form the biosensing system. The sensor array was calibrated using water–glycerol solutions, and the performance was found to be exactly as expected. Measurement of the crosstalk between the sensor pixels showed an isolation of $sim$ 30 dB. Selective functionalization of the pixels was achieved through the use of aqueous 3, 3 $^{prime}$-Dithiobis (sulfosuccinimidylpropionate) (DTSSP) molecules. The adsorption of avidin on DTSSP gave a frequency signal of 60 kHz in comparison to unfunctionalized pixels. The specific adsorption of avidin on functionalized pixels was confirmed through fluorescence microscopy. Comparing the performance of the micromachined quartz crystal microbalance (QCM) with a commercial 5-MHz device, we found that the micromachined QCM has a 4.25 times higher signal-to-noise ratio. Based on the measurement of the noise and using three times the frequency noise as the limit for the detection of avidin molecules, we expect to resolve a minimum of $sim$1/960 of a monolayer of avidin corresponding to an aerial mass density resolution of 0.7 $hbox{ng/cm}^{2}$ .$hfill$[2008-0196]   相似文献   

7.
This paper presents the development of a micro-machined dual-backplate capacitive microphone for aeroacoustic measurements. The device theory, fabrication, and characterization are discussed. The microphone is fabricated using the five-layer planarized-polysilicon SUMMiT V process at Sandia National Laboratories. The microphone consists of a 0.46-mm-diameter 2.25-mum-thick circular diaphragm and two circular backplates. The diaphragm is separated from each backplate by a 2-mum air gap. Experimental characterization of the microphone shows a sensitivity of 390 muV/Pa. The dynamic range of the microphone interfaced with a charge amplifier extends from the noise floor of 41 dB/ radicHz up to 164 dB and the resonant frequency is 178 kHz.  相似文献   

8.
Micromachined low-loss microwave switches   总被引:9,自引:0,他引:9  
The design and fabrication of a micromechanical capacitive membrane microwave switching device is described. The switching element consists of a thin metallic membrane, which has two states, actuated or unactuated, depending on the applied bias. A microwave signal is switched on and off when the membrane is switched between the two states. These switches have a switching on speed of less than 6 μs and a switching off speed of less than 4 μs. The switching voltage is about 50 V. The switches have a bowtie shape and showed low insertion loss of 0.14 dB at 20 GHz and 0.25 dB at 35 GHz, and isolation of 24 dB at 20 GHz and 35 dB at 35 GHz. These devices offer the potential for building a new generation of low-loss high-linearity microwave circuits for a variety of phased antenna arrays for radar and communications applications  相似文献   

9.
z轴硅微陀螺仪高精度闭环驱动研究   总被引:1,自引:0,他引:1  
杨波  周百令 《测控技术》2006,25(9):5-8,15
提出了一种z轴硅微陀螺仪高精度闭环驱动方案.该方案实现了闭环驱动的相角和增益条件的解耦;对相角进行了优化控制,消除了驱动频率和驱动模态固有频率的相对频差影响;利用闭环回路中直流控制量与驱动力间的非线性关系,实现闭环自激控制.试验结果表明,1 h内,驱动频率变化的均方差为0.009 Hz,相对变化量为2.2ppm(1ppm=10-6);驱动幅度变化的均方差为0.002 5 mV,相对变化量为15ppm;驱动信号的噪声功率谱密度低于-100 dB.由此可见,本方案使陀螺仪驱动性能得到了极大提高.  相似文献   

10.
Micromachined acoustic-wave liquid ejector   总被引:1,自引:0,他引:1  
This paper describes the design and performance of micromachined, self-focusing acoustic-wave liquid ejector (AWLE) that requires no heat, nozzle, nor acoustic lens. The AWLE has a very simple device structure and is easy to fabricate. Three versions of AWLE have been designed, fabricated, and tested for an ink-jet printing application. Also developed are computer simulation and design aids that take into account the acoustic loss in water and the two-time wave reflections at the water-air and water-transducer interfaces. The AWLE has been observed to eject water droplets of about 5 μm in diameter with radio frequency (RF) pulses of 5 μs pulsewidth. Overall, the AWLE has been shown to be capable of improving the printing resolution and speed of ink-jet printing significantly  相似文献   

11.
Microneedle-based drug delivery has shown considerable promise for enabling painless transdermal and hypodermal delivery of conventional and novel therapies. However, this promise has yet to be fully realized due in large part to the limitations imposed by the micromechanical properties of the material systems being used. In this paper, we demonstrate titanium-based microneedle devices developed to address these limitations. Microneedle arrays with in-plane orientation are fabricated using recently developed high-aspect-ratio titanium bulk micromachining and multilayer lamination techniques. These devices include embedded microfluidic networks for the active delivery and/or extraction of fluids. Data from quantitative and qualitative characterization of the fluidic and mechanical performance of the devices are presented and shown to be in good agreement with finite-element simulations. The results demonstrate the potential of titanium micromachining for the fabrication of robust, reliable, and low-cost microneedle devices for drug delivery  相似文献   

12.
体硅MEMS和CMOS电路的单片集成技术是提高传感器性能的有效途径,但是集成技术会对陀螺的设计和CMOS电路的设计提出更高的要求.通过建立CMOS-MEMS体硅陀螺的等效电学模型,实现了对CMOS-MEMS体硅陀螺的系统级仿真.通过系统仿真,陀螺的结构部分、电路部分、集成产生的寄生效应以及工艺误差得到了有效的分析,从而能够了解它们相互之间的影响,更好的指导CMOS-MEMS体硅集成器件的设计.  相似文献   

13.
硅微机械陀螺的接口检测技术   总被引:4,自引:0,他引:4  
研究了微陀螺的电容变化率为10-7~10-8时的微弱输出信号的检测技术,这是微机械器件研制中具有普遍性的技术难点。在研究检测微小电容变化量的积分电路的基础上,进一步采用了可抑制低频噪声和漂移的相关双采样技术,以及抑制由开关的电荷注入引起的误差的技术。  相似文献   

14.
Micromachined Acoustic Resonant Mass Sensor   总被引:2,自引:0,他引:2  
This paper describes a highly sensitive, film bulk acoustic resonator (FBAR) mass sensor (built on a micromachined silicon-nitride diaphragm with a piezoelectric thin film and Al electrodes) that can operate in vapor and liquid. The sensitivity of the device to mass change on its surface has been investigated by having various thicknesses of silicon-nitride support layer and also of Al layer. The sensor is measured to have a mass sensitivity of 726 cm$^2$/g, which is about 50 times that of a typical quartz crystal microbalance (QCM). In vapor, the sensor (operating at around 1 GHz and having a relatively high quality (Q) factor of 200–300) shows a minimum detectable frequency shift of about 400 Hz, which corresponds to a mass change of$10^-9$g/cm$^2$on the sensor surface, comparable with that detectable by a QCM. In liquid, though the Q usually drops more than an order of magnitude, we obtain a Q of 40 at 2 GHz by using a second harmonic resonance of the resonator. And with the Q, a minimum 5 ppm resonant frequency shift can be detected, which corresponds to$10^- 8$g/cm$^2$change on the sensor surface.hfillhbox[1374]  相似文献   

15.
Results are presented for micromachined plastic waveguide bandpass iris filters for W-band applications using a cost-effective polymer micro hot embossing process in conjunction with metallic electroplating and sealing techniques. The prototype filter has an 8-μm thick electroplated gold layer on a polymeric WR-10 waveguide with a 5-cavity Chebyschev-type design. Measurement results show center frequency of 96.77 GHz with a bandwidth of 3.15%, a loaded quality factor 31.73 and an unloaded quality factor for a single cavity resonator is 1210.6, respectively. A minimum insertion loss of −1.22 dB and return loss of better than −9.3 dB have been measured over the entire passband.  相似文献   

16.
Micromachined electrodes for biopotential measurements   总被引:2,自引:0,他引:2  
We describe the microfabrication, packaging and testing of a micromachined dry biopotential electrode, (i.e., where electrolytic gel is not required). It consists of an array of micro-dimensioned, very sharp spikes, (i.e., needles) designed for penetration of human skin which circumvent high impedance problems associated with layers of the outer skin. The spikes are etched in silicon by deep reactive ion etching and are subsequently covered with a silver-silverchloride (Ag-AgCl) double layer. The electrode-skin-electrode impedance of dry spiked electrodes having a size of 4×4 mm2 is reduced compared to standard electrodes using electrolytic gel and having a comparable size. Recorded low amplitude biopotentials resulting from the activity of the brain, (i.e., EEG signals) are of high quality, even for spiked electrodes as small as 2×2 mm2. The spiked electrode offers a promising alternative to standard electrodes in biomedical applications and is of interest in research of new biomedical methods  相似文献   

17.
Micromachined flat-walled valveless diffuser pumps   总被引:10,自引:0,他引:10  
The first valveless diffuser pump fabricated using the latest technology in deep reactive ion etching (DRIE) is presented. The pump was fabricated in a two-mask micromachining process in a silicon wafer polished on both sides, anodically bonded to a glass wafer. Pump chambers and diffuser elements were etched in the silicon wafer using DRIE, while inlet and outlet holes are etched using an anisotropic etch. The DRIE etch resulted in rectangular diffuser cross sections. Results are presented on pumps with different diffuser dimensions in terms of diffuser neck width, length, and angle. The maximum pump pressure is 7.6 m H2O (74 kPa), and the maximum pump flow is 2.3 ml/min for water  相似文献   

18.
A capacitive micromachined ultrasonic transducer (CMUT) array for minimally invasive medical diagnosis has been developed. Unlike traditional ultrasonic transducers, which generally use a bulky piece of substrate, this transducer array was integrated on a 40--thick micromachined silicon substrate into a probe shape with a typical shank width of 50-80 and a shank length of 4-8 mm. For 1-D arrays, 24-96 CMUT devices were integrated on one such silicon probe and formed an accurately configured phase array. In addition to miniaturization, reduction of the substrate thickness also decreases the intertransducer crosstalk due to substrate Lamb waves. Due to its miniature size, this array can be placed or implanted close to the target tissue/organ and can perform high-resolution high-precision diagnosis and stimulation using high-frequency ultrasounds. The issue of conflict between resolution and penetration depth of ultrasonic diagnosis can therefore be resolved. A two-layer polysilicon surface micromachining process was used to fabricate this device. Suspended polysilicon membranes of diameters ranging from 20 to 90 and thicknesses from 1.0 to 2.5 were used to generate and detect ultrasounds of frequencies ranging from 1 to 10 MHz. B-mode imaging using this transducer array has been demonstrated.  相似文献   

19.
We present a fabrication method for silicon nitride solid immersion lenses (SILs) integrated with atomic force microscope (AFM) cantilevers. We demonstrate a scanning optical microscope based on the microfabricated SIL that operates in reflection and transmission modes at a wavelength of /spl lambda/ = 400 nm. In this microscope, light is focused to a spot in a high refractive index SIL held close to the sample. The minimum spot size of a SIL-based microscope, which determines the transverse optical resolution, is /spl lambda//(2n) where n is the refractive index of the SIL. This is smaller than the minimum spot size of /spl lambda//2 in air. The SIL, therefore, makes possible optical resolution better than the diffraction limit in air. The full-width at half-maximum (FWHM) spot size of the SIL-based microscope is measured to be /spl sim/133 nm in transmission mode, which is /spl sim/1.98 times better than the spot size measured without the SIL (264 nm). This improvement factor is close to the refractive index of the silicon nitride SIL (n = 1.96).  相似文献   

20.
Fluid Effects in Vibrating Micromachined Structures   总被引:6,自引:0,他引:6  
Squeeze film damping and hydrodynamic lift for a micromechanical perforated proof mass are calculated and measured. This paper has resulted in closed-form expressions that can be used to design accelerometers, tuning-fork gyroscopes (TFGs), and other micromechanical devices. The fluid damping and lift are determined using finite-element analyses of the normalized and linearized governing equations where the boundary condition of the pressure relief holes is derived using pipe flow analysis. The rarefaction of gas is incorporated in the governing equations based on slip flow condition. As a further check, a one-dimensional (1-D) network model is developed to account for the boundary condition of the holes on a tilted proof mass. Both closed-form and numerical solutions are compared against experimental data over a range of pressures.hfillhbox[1221]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号