首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
马语峻  刘向军 《化工学报》1951,73(9):4103-4112
化石燃料燃烧烟气中含有大量水分和潜热,高湿度烟气的直接排放造成极大的资源浪费和环境问题。多孔陶瓷膜是目前烟气水热回收最有前景的技术之一,其水分回收热力学和动力学的定量描述是该技术发展和装置设计的关键所在。分析了水分在多孔陶瓷膜表面及内部传质机理,基于Kelvin理论建立了水分在陶瓷膜内毛细凝聚热力学模型,并选取典型烟气温/湿度条件,得出不同工况下陶瓷膜发生毛细凝聚的临界孔径、凝聚水量及工作孔体积占比;进而基于毛细凝聚的表面传质和孔道输运Hagen-Poiseuille方程建立了陶瓷膜水分传质动力学模型,对典型温/湿度工况下回收水通量进行了计算,结果表明,多孔陶瓷膜的毛细凝聚效应对烟气水分回收的优越性十分明显,其表面回水通量远远大于冷凝法的水通量,孔径越小,表面水通量越高,但及时将孔道内的液态水输运到陶瓷膜另一侧需要的压差也越大,本文计算条件下,膜孔径为20.0 nm的陶瓷膜较为适宜。  相似文献   

2.
马语峻  刘向军 《化工学报》2022,73(9):4103-4112
化石燃料燃烧烟气中含有大量水分和潜热,高湿度烟气的直接排放造成极大的资源浪费和环境问题。多孔陶瓷膜是目前烟气水热回收最有前景的技术之一,其水分回收热力学和动力学的定量描述是该技术发展和装置设计的关键所在。分析了水分在多孔陶瓷膜表面及内部传质机理,基于Kelvin理论建立了水分在陶瓷膜内毛细凝聚热力学模型,并选取典型烟气温/湿度条件,得出不同工况下陶瓷膜发生毛细凝聚的临界孔径、凝聚水量及工作孔体积占比;进而基于毛细凝聚的表面传质和孔道输运Hagen-Poiseuille方程建立了陶瓷膜水分传质动力学模型,对典型温/湿度工况下回收水通量进行了计算,结果表明,多孔陶瓷膜的毛细凝聚效应对烟气水分回收的优越性十分明显,其表面回水通量远远大于冷凝法的水通量,孔径越小,表面水通量越高,但及时将孔道内的液态水输运到陶瓷膜另一侧需要的压差也越大,本文计算条件下,膜孔径为20.0 nm的陶瓷膜较为适宜。  相似文献   

3.
A theoretical model, which considers the fully unsteady character of both heat and mass transfer during the drying of single droplet/wet particle, is presented. The model enables prediction of pressure and fraction distributions of air-vapour mixture within the capillary pores of the wet particle crust. The simulations of the drying process of a single silica droplet under different conditions show a permanent rising of pressure within the capillary pores, but the corresponding vapour fraction remains less than unity. The comparison between the drying histories of the silica droplet, predicted by the present model with the data, calculated by the model which assumes a quasi-steady-state mass transfer and linear pressure profile within the capillary pores, shows inconsiderable differences between the droplet/wet particle temperature and mass time-changes. At the same time, the present model predicts pressure build-up and temperature rising within the particle wet core. However, in the studied cases the temperature of the wet core temperature does not exceed the liquid saturation temperature and therefore no boiling of liquid within the particle wet core is observed.  相似文献   

4.
李伟  齐大伟  杨炯良 《化工进展》2022,41(9):4618-4624
某风洞真空排气系统在运行过程中,会产生大量含水蒸气的混合气体。为了提高排气效率降低能耗,本文引入冷凝塔工艺,采用直接接触换热冷凝方式使来流含水蒸气的混合气体降温冷凝。基于微元塔高传质模型,对进入冷凝塔的热流气体与冷却水直接接触换热过程分析,推导出传质系数数学方程表达式。结合实验数据考察了进气压力与冷凝降温排出气体中水蒸气含量的影响,并拟合得到一定温度下进气压力与该气体水蒸气含量的数学表达式;也考察了冷却水质量通量和气液比变化对传质系数、体积传热系数、出气温度的影响,在此基础上拟合得到针对风洞气流直接接触换热气液比与体积传热系数数学关系式,并计算出最优气液比。实验得出的规律对风洞气流的直接接触换热优化设计和应用起到了指导作用。  相似文献   

5.
Rewarming of fruits and vegetables after cooling is characterized by heat and mass transfer processes, which leads commonly to condensation of water on the produce surface at temperatures below the dew point. This effect may affect the produce quality due to microbial growth at unfavorable environmental conditions. The amount of condensed water is a function of the produce surface temperature and of the surrounding conditions as air temperature, air humidity, and air flow. Under practical conditions, both the warming and the condensation are strongly affected by the packaging system used. Depending on the flow conditions close to the produce surface, parameters of heat and mass transfer under laboratory conditions were measured. A mathematical model was developed for the determination of the amount of condensed water on fruit surfaces, its reevaporation, and its total dwell time dependent on the environment air conditions. The model describes the heat and mass transfer processes on single fruits. The process of diffusion of humidity in air and proceed of surface temperature is the basis for the model.  相似文献   

6.
《Drying Technology》2007,25(7):1237-1242
Rewarming of fruits and vegetables after cooling is characterized by heat and mass transfer processes, which leads commonly to condensation of water on the produce surface at temperatures below the dew point. This effect may affect the produce quality due to microbial growth at unfavorable environmental conditions. The amount of condensed water is a function of the produce surface temperature and of the surrounding conditions as air temperature, air humidity, and air flow. Under practical conditions, both the warming and the condensation are strongly affected by the packaging system used. Depending on the flow conditions close to the produce surface, parameters of heat and mass transfer under laboratory conditions were measured. A mathematical model was developed for the determination of the amount of condensed water on fruit surfaces, its reevaporation, and its total dwell time dependent on the environment air conditions. The model describes the heat and mass transfer processes on single fruits. The process of diffusion of humidity in air and proceed of surface temperature is the basis for the model.  相似文献   

7.
针对动力型热管内流动凝结传热过程中的特性复杂未知,搭建了动力型热管冷凝特性测试实验台。对不同流量及干度下的R134a管内流动凝结过程中的压降特性和传热特性进行了实验研究,实验结果表明:压降随着管内工质质量流量和气体干度的增加而增加,与文献中3种不同压降模型进行了比较,得出Muller-Steinhagen-Heck模型能更好地预测管内流动凝结过程中的压降特性。传热系数随着管内工质质量流量和气体干度的增加而增加,并且低干度区的增长斜率要明显大于高干度区的增长斜率,与文献中4种不同传热模型进行了比较,得出Chen模型能更好地预测管内流动凝结过程中的传热特性。该研究为泵的选择、换热器的设计、系统的优化以及两相流凝结相变过程的研究提供了理论参考。  相似文献   

8.
9.
Grain drying is a simultaneous heat and moisture transfer problem. The modelling of such a problem is of significance in understanding and controlling the drying process. In the present study, a mathematical model for coupled heat and moisture transfer problem is presented. The model consists of four partial differential equations for mass balance, heat balance, heat transfer and drying rate. A simple finite difference method is used to solve the equations. The method shows good flexibility in choosing time and space steps which enable the simulation of long term grain drying/cooling processes. A deep barley bed is used as an example of grain beds in the current simulation. The results are verified against experimental data taken from literature. The analysis of the effects of operating conditions on the temperature and moisture content within the bed is also carried out  相似文献   

10.
Axial temperature profiles of the vapor phase can provide valuable indication of the condensation process along the heat transfer path and highlight the impact of non-condensable gases on a unit's performance. The local measurements at moderate vacuum conditions for condensation of a binary mixture are presented alongside the implementation and assessment of optical sensors in a heat transfer process. The results show a good depiction of the characteristic temperature behavior during the condensation process. The relation between temperature, partial pressure and mole fractions are shown.  相似文献   

11.
ABSTRACT

Grain drying is a simultaneous heat and moisture transfer problem. The modelling of such a problem is of significance in understanding and controlling the drying process. In the present study, a mathematical model for coupled heat and moisture transfer problem is presented. The model consists of four partial differential equations for mass balance, heat balance, heat transfer and drying rate. A simple finite difference method is used to solve the equations. The method shows good flexibility in choosing time and space steps which enable the simulation of long term grain drying/cooling processes. A deep barley bed is used as an example of grain beds in the current simulation. The results are verified against experimental data taken from literature. The analysis of the effects of operating conditions on the temperature and moisture content within the bed is also carried out  相似文献   

12.
13.
高湿度工业废气冷凝脱湿模型研究与数值模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
针对高湿度工业废气冷凝脱湿进行模型研究和数值模拟,引入分配系数α表征雾状冷凝和膜状冷凝并存的权重.恒壁温冷凝管外混合气体在环形空间湍流冷却冷凝的温度分布、湿度分布及其梯度(传热传质推动力)分布的模拟结果显示,雾状冷凝的控制机理是冷壁面附近温度梯度与湿度梯度协同作用下传热传质产生的局部过饱和;膜状冷凝从冷壁面移出大量冷凝潜热,促使气相主体传热传质过程更迅速,脱湿效果更好.实际过程介于二者之间.DAP尾气冷却冷凝现场实验传热传质数据,在水汽冷凝减量34%~57%的范围内,与α=0.2的数值模拟结果相当吻合,验证了本文的模型与数值模拟.  相似文献   

14.
A three-dimensional numerical model is presented for studying the convection-condensation of mixture with vapor in a tube with edgefold-twisted-tape inserts under transition flow.According to the diffusion layer theory and laminar species transport,a condensation model with user defined function is proposed and compared with heat and mass transfer analogy and experimental test.With the condensation model,the influences of gap width and op-erating parameters on thermal-hydrodynamics performance are simulated.As the gap width increases,convection and condensation heat transfer increase initially and then decrease,while convection heat transfer increases sharply and then decreases slightly.Increasing vapor fraction has a significant effect on condensation heat transfer but it has little effect on convective heat transfer.With the increase of inner wall temperature both convection and condensa-tion heat transfer all decrease and the ratio of condensation to total heat decrease dramatically.Increases inlet tem-perature mainly affects convection heat transfer.  相似文献   

15.
A new one‐dimensional mathematical model to simulate the complex coupled heat and moisture transfer in porous polymer materials is presented. The new model takes into account effects of multiple involved processes such as radiation and conduction heat transfer, liquid capillary action, moisture sorption, and condensation. The technique of volume of fraction (VOF) is used to model the dynamic distribution of moisture in different phases, that is, vapor and liquid. The finite volume method (FVM) is used to develop the numerical computational scheme to solve the model. The temperature change on the fabric surface derived from the computational results of the model is compared with experimental measurements with reasonable agreement between the two. Further numerical simulations were carried out to investigate the complex interactions and coupling effects among the various heat and moisture‐transfer processes involved. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2780–2790, 2003  相似文献   

16.
含空气蒸汽冷凝传热特性数值模拟   总被引:3,自引:2,他引:1       下载免费PDF全文
宿吉强  王辉  孙中宁  张东洋 《化工学报》2014,65(9):3425-3433
根据已有的传热传质关系式,通过CFD软件在控制方程中加载控制方程源项,建立了含空气蒸汽冷凝的数值计算模型,运用此模型对两种实验的共10组工况进行了数值计算。结果表明,计算模型对两组实验在压力、温度、空气含量以及冷凝传热系数的预测方面均有较高的准确度;潜热传热系数及显热传热系数都随着空气含量的升高而减小;在空气质量分数低于50%的工况下,潜热换热是冷凝传热的主导因素;局部潜热传热系数沿传热管高度方向从下至上呈递减趋势,而局部显热传热系数则呈现相反变化。  相似文献   

17.
A detailed review of the recent works regarding applications of supercritical media in Fischer–Tropsch synthesis (FTS) is presented. Differences in activity, CH4 and CO2 selectivity, hydrocarbon and olefin distributions, catalyst stability and heat transfer between supercritical Fischer–Tropsch syntheses (SC-FTS) and conventional gas phase Fischer–Tropsch synthesis (GP-FTS) are compared. The effects of temperature, pressure, solvent type, supercritical media/syngas molar ratio on SC-FTS are discussed. Finally selective production of wax via SC-FTS is briefly presented. Experimental analyses reveal that unique properties of supercritical media can improve FTS catalyst activity and selectivity in SC-FTS due to higher heat and mass transfer rates in comparison to GP-FTS.  相似文献   

18.
Analysis of a mechanical vapor compression desalination system   总被引:1,自引:0,他引:1  
Hikmet S. Aybar 《Desalination》2002,142(2):181-186
The mechanical vapor compression (MVC) desalination system is based on distillation of seawater. The system is basically a heat exchanger that is an evaporator/condenser. The heat required to evaporate water which flows on one side of a heat transfer surface is supplied through the simultaneous condensation of the distillate-producing vapor on the other side of the surface. That is, the latent heat is exchanged in the evaporation—condensation process within the system. A compressor is the driving force for this heat transfer and provides the energy required separating the solution and overcoming dynamic pressure losses and other irreversibilities. In this study, the operation characteristics of a low-temperature MVC desalination system are investigated. In the modeling, the overall energy balance and mass balance equations and LMTD method for heat transfer are used. The tube diameter and the tube length were taken at 0.025 m and 9 m, respectively. The main dependent parameters, the compressor work and the mass flow rate of the distilled water, were investigated against the independent parameters, the evaporation side pressure, the condensation side pressure, and the water inlet temperature.  相似文献   

19.
刘冉  李杰  王玉兵  詹洪波  张大林 《化工学报》2022,73(11):4938-4947
建立了采用空气射流冲击冷却方法的冷凝换热实验系统,对R134a在铝质微小菱形离散肋通道中的冷凝换热特性进行了实验研究。实验工况范围为制冷剂干度0~1、饱和压力0.50~1.50 MPa、制冷剂质量流率160~380 kg/(m2·s)、热通量10.1~59.8 kW/m2。实验获得了不同工况下的通道局部冷凝传热系数,分析了干度、饱和压力、质量流率以及热通量对冷凝换热的影响规律。实验结果表明:局部冷凝传热系数随干度、质量流率和局部热通量的减小而减小,随饱和压力的降低而增大,其中在干度x>0.4的区域内质量流率对于冷凝传热系数的影响效果更为明显。基于实验数据,提出了一个适用于本实验中微小菱形离散肋通道的冷凝换热计算公式。  相似文献   

20.
烧结床层的热质分析   总被引:2,自引:2,他引:0       下载免费PDF全文
刘斌  冯妍卉  姜泽毅  张欣欣 《化工学报》2012,63(5):1344-1353
基于烧结生产的复杂物理化学过程,建立了烧结床层传热、传质和流动的二维非稳态数学模型,考虑了孔隙率、物料颗粒当量直径等床层结构影响参数的变化,并对气固传热系数进行了修正。通过数值计算,获得了烧结床层的温度场、结构变化和烟气的流场、温度场、浓度场等。烟气出口温度、床层总压降与生产实测值吻合较好,验证了数学模型的正确性。进一步分析了燃料配比、风量和给料温度等操作参数对烧结过程的影响。研究结果表明:燃烧带的厚度、最高温度随着烧结过程的进行而逐渐增加。床层孔隙率、颗粒当量直径的变化主要发生在燃烧带的熔融、冷凝阶段。料层压损最大的是燃烧熔融层,其次是混合料带,最小的是烧结矿层。增加焦粉含量、提高烧结混合料的初温,有利于提高成矿质量;风量过大时,会造成成矿质量下降、生产成本提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号