首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
利用羟甲基化三聚氰胺和γ-环氧丙氧基三甲氧基硅烷反应制备了三聚氰胺有机硅杂化物,并用FTIR、29S iNMR对其结构进行了表征。然后将其与环氧树脂共混固化,对固化物热性能、阻燃性、力学性能进行了分析。结果表明,该三聚氰胺有机硅杂化环氧树脂固化物不仅保持纯环氧树脂玻璃化转变温度,而且在空气和氮气中的热失重分析显示,高温区域的热稳定性及残碳率比纯环氧树脂高;三聚氰胺有机硅杂化环氧树脂固化物的极限氧指数达到30.2,与纯环氧树脂相比,该固化物的极限氧指数提高了43%左右,抗冲击强度有较大幅度的提高,当三聚氰胺有机硅杂化物的添加量为环氧树脂质量的5%时,环氧树脂固化物的抗冲击强度达到20.3 kJ/mol;扫描电子显微镜照片显示三聚氰胺有机硅杂化环氧树脂的韧性较纯环氧树脂有很大提高。  相似文献   

2.
以γ-环氧丙氧基三甲氧基硅烷(KH-560)与磷酸反应合成了一种含磷硅烷偶联剂,将这种含磷硅烷偶联剂与硅溶胶按一定配比进行水解缩聚反应,得到一种硅磷杂化物,将该硅磷杂化物引入到双酚A环氧树脂(E-51),以4,4′-二氨基二苯基甲烷为固化剂,制备了硅磷杂化物/环氧树脂固化物。对该固化物的玻璃化转变温度、热失重、拉伸强度、极限氧指数(LOI)进行了测试。结果表明,该固化物玻璃化转变温度,700℃残炭量以及LOI均比纯环氧树脂固化物高,拉伸强度却下降较少。当硅磷杂化物的添加量占环氧树脂质量的50%时,该固化物的玻璃化转变温度可以达到178℃,极限氧指数可以达到28.2,与纯环氧树脂固化物相比,分别提高了18℃和25%。与纯环氧树脂固化物相比,该硅磷杂化物/环氧树脂固化物具有较好的阻燃性及热稳定性。  相似文献   

3.
通过有机磷化合物9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)与双酚A型环氧树脂反应合成了一种含磷环氧树脂。通过跟踪测定环氧当量研究了开环反应过程,并用傅里叶红外光谱仪对产物结构进行了表征;采用差示扫描量热法和平板凝胶法表征了树脂体系的固化特性;依据UL94垂直燃烧法研究了磷含量与树脂体系阻燃性能的关系,采用热重分析(TGA)研究了不同含磷量环氧树脂的残炭率及裂解性能;采用差示扫描量热仪和电子万能拉伸试验机研究了阻燃环氧树脂固化物的耐热性和力学性能。结果表明,DOPO与双酚A型环氧树脂在170 ℃下6 h可完成开环加成反应;含磷环氧树脂的固化温度较双酚A型环氧树脂提高;磷含量为2.0 %(质量分数,下同)时,含磷环氧树脂固化物阻燃性能达UL94 V-0级,残炭率为23 %;其固化物的耐热性和力学性能较双酚A型环氧树脂无明显下降。  相似文献   

4.
以三聚氰胺和甲醛溶液为原料,合成了三羟甲基三聚氰胺(TMM),并将其与聚磷酸铵(APP)作为复配阻燃剂,采用聚酰亚胺预聚法制备了阻燃聚氨酯–酰亚胺(PUI)泡沫塑料。分析了TMM/APP对PUI泡沫塑料极限氧指数(LOI)、烟密度等级和炭层形貌的影响。结果表明,合成的TMM有较高的残炭率和最大热失重温度;随着TMM/APP用量的增加,泡沫的LOI增大,烟密度降低,当TMM与APP配比为1∶3时LOI最高可达31.2%;TMM能改善泡沫炭层多孔的缺点。  相似文献   

5.
首先用 -环氧丙氧基三甲氧基硅氧烷和亚磷酸二乙酯(DEP)制备了一种含磷有机硅氧烷(GPTMS-DEP),并对其改性的环氧树脂酚醛固化体系的阻燃性、耐热性及相容性进行了研究。结果表明,固化物的极限氧指数达到30 %;玻璃化转变温度为157 ℃,比纯环氧树脂提高了约45 ℃;在720℃的残炭量及失重50 %时的温度均比纯环氧树脂有明显提高;扫描电子显微镜照片显示,当GPTMS-DEP含量在20 %以下时,GPTMS-DEP改性环氧树脂各组分间相容性良好。  相似文献   

6.
研究了以纳米Al_2O_3作为协同阻燃剂,对EP/DOPO和EP/HPCTP树脂固化物阻燃性能的影响。通过热重分析测试(TGA)、动态热机械分析测试(DMA)、氧指数测定(LOI)及垂直燃烧测试(UL-94)重点探讨了树脂固化物的耐热及阻燃性能。测试结果表明,含磷阻燃剂有助于提高环氧树脂固化物的阻燃性能,但会降低其玻璃化转变温度(Tg)。随着纳米Al_2O_3的加入,残炭率(800℃)、极限氧指数(LOI)得到进一步的提高,并且能够在一定程度上提升树脂固化物的玻璃化转变温度(Tg)和初始热裂解温度(T5%)。  相似文献   

7.
利用γ(2,3-环氧丙氧基)丙基三甲氧基硅烷与磷酸反应制备了一种含磷有机硅杂化物,并利用红外光谱对这种含磷有机硅杂化物进行了结构表征。将这种含磷有机硅杂化物加入到双酚A环氧树脂/4,4'-二氨基二苯基甲烷体系制备了环氧树脂/含磷有机硅杂化物固化体系,对这种固化物进行了热失重分析,并测试了其玻璃化转变温度(Tg)和极限氧指数。结果表明,该固化物的Tg比纯环氧树脂固化物有所提高,初始分解温度比纯环氧树脂低,而高温残炭率有大幅提高;当含磷有机硅杂化物含量为30份时,固化物的Tg提高9 ℃,极限氧指数到达27.3 %,700 ℃残炭率达到34.1 %,比纯环氧树脂分别提高28 %和77.8 %。  相似文献   

8.
以对苯二胺、4-氟苯甲醛、4-硝基苯甲醛、4-甲氧基苯甲醛、9,10-二氢-9-氧-10-磷杂菲-10-氧化物(DOPO)为原料,经两步反应,合成了3种含磷、氮的DOPO型环氧树脂用阻燃剂,通过1HNMR、FTIR对中间体及目标产物结构进行了表征。将合成的阻燃剂按0.00%、5.00%、10.00%、15.00%、20.00%(按环氧树脂质量计算)加入到环氧树脂(EP)中,加入4,4'-二氨基二苯基甲烷(DDM)固化后得到透明的复合材料,并对复合材料的热稳定性和阻燃性能进行了初步评价。结果表明,添加阻燃剂后的固化物初始失重温度高于300℃,可满足高分子材料加工时对热稳定性的要求;随着固化物中磷含量的增加,固化物的阻燃性增大;当固化物中磷质量分数达到1.00%时,所有固化物都可以达到UL94 V-0级,测得其中N,N'-双[1-(4-硝基苯基)-1-(9-氢-9-氧杂-10-磷杂菲-10-氧化物)-甲基]-1,4-苯二胺(BNP-DOPO/DDM/EP)固化物的极限氧指数(LOI)值为37.0,是三组固化物中最高者。  相似文献   

9.
以对苯二胺、4-氟苯甲醛、4-硝基苯甲醛、4-甲氧基苯甲醛、9,10-二氢-9-氧-10-磷杂菲-10-氧化物(DOPO)为原料,经两步反应,合成了3种含磷、氮的DOPO型环氧树脂用阻燃剂,通过1HNMR、FTIR对中间体及目标产物结构进行了表征。将合成的阻燃剂按0.00%、5.00%、10.00%、15.00%、20.00%(按环氧树脂质量计算)加入到环氧树脂(EP)中,加入4,4'-二氨基二苯基甲烷(DDM)固化后得到透明的复合材料,并对复合材料的热稳定性和阻燃性能进行了初步评价。结果表明,添加阻燃剂后的固化物初始失重温度高于300℃,可满足高分子材料加工时对热稳定性的要求;随着固化物中磷含量的增加,固化物的阻燃性增大;当固化物中磷质量分数达到1.00%时,所有固化物都可以达到UL94 V-0级,测得其中N,N'-双[1-(4-硝基苯基)-1-(9-氢-9-氧杂-10-磷杂菲-10-氧化物)-甲基]-1,4-苯二胺(BNP-DOPO/DDM/EP)固化物的极限氧指数(LOI)值为37.0,是三组固化物中最高者。  相似文献   

10.
针对国内对位芳纶(PPTA)在实际生产中产生的低分子量PPTA粉末,探讨了一种有效回收再利用的方法。本文以低分子量PPTA为原料、环氧氯丙烷为改性剂,采用金属化/取代反应,制备了环氧氯丙烷(ECH)修饰的PPTA(PPTAGE),并通过单因素实验优化了PPTAGE合成条件。结果表明:合成条件为m(ECH)∶m(PPTA)=3∶1、NaH用量(与总投料量质量之比)0.4%、反应温度80℃、反应时间4.5h时,PPTAGE接触角最小,纤维表面能最佳。将改性前后的芳纶分别作为环氧树脂的填料,得到固化物样条,研究了PPTAGE对环氧树脂复合材料力学性能的影响。固化物力学性能研究表明,PPTAGE可以在一定程度上提高与环氧树脂基体的黏合,在添加量为1%时,复合材料的力学性能达到最佳;热重(TGA)分析表明,固化物热稳定性较PPTA/E-51有所提高;扫描电镜(SEM)测试表明,PPTAGE/E-51冲击断裂面为韧性断裂。  相似文献   

11.
聚苯基甲氧基硅氧烷改性环氧树脂的阻燃性能研究   总被引:1,自引:0,他引:1  
采用氧指数(LOI),UL-94,热失重(TGA)等手段考察了聚苯基甲氧基硅氧烷(PPMS)改性对环氧树脂(E-20)固化体系阻燃性能的影响.相比未改性环氧体系,当m(E-20)∶m(PPMS)=73∶时,改性环氧体系的LOI由纯E-20环氧树脂的17.5%上升到21.5%;水平火蔓延速率由36.23 mm/min降低到26.60 mm/min;质量损失为5%时的热分解温度由134.7℃上升到163.0℃,750℃时残炭量由0.21%增加到25.79%.此外,还通过红外光谱对燃烧后的残炭结构进行了分析,探讨了相关阻燃机理.  相似文献   

12.
有机硅改性松香基环氧树脂的制备及阻燃性能   总被引:2,自引:1,他引:1       下载免费PDF全文
制备了聚甲基苯基硅氧烷(PMPS)改性松香基乙二醇二缩水甘油醚AR-EGDE。红外光谱(IR)、核磁共振(13C NMR)和环氧值测试结果表明有机硅成功接枝至环氧树脂。同时,将PMPS与AR-EGDE充分混合得到物理改性树脂。通过力学性能和极限氧指数测试探讨了改性方法对改性树脂力学及阻燃性能的影响:化学改性优于物理改性及未改性的AR-EGDE。热失重、炭层分析表明,PMPS改性的树脂在受热和燃烧过程中,都能形成含硅炭层,该炭层可延缓内部材料热分解,同时阻止可燃裂解气体的释放和熔滴发生,从而提高材料的耐热和阻燃性能。物理改性松香基环氧,燃烧时无法形成有效富硅炭层覆盖于底部材料,从而使其阻燃性劣于化学改性。  相似文献   

13.
采用双邻苯二甲腈树脂(BAPh)对环氧树脂E-44(EP)进行改性,同时制备了BAPh/EP/玻纤复合材料。采用示差扫描量热仪,热重分析,力学性能测试及氧指数仪研究了改性树脂的热性能、力学性能及阻燃性能,并对BAPh/EP/玻纤复合材料的力学性能进行了表征。结果表明,当BAPh质量分数达到50%时,改性树脂固化物在空气中的起始分解温度达到377.6℃,比纯环氧提高74.3℃,氧指数达到34.5%,复合材料的弯曲性能指标达到最大,添加双邻苯二甲腈后环氧树脂的耐热性、力学性能和阻燃性能得到了明显改善。  相似文献   

14.
A novel hyperbranched polyphosphate ester (HPE) was synthesized via the polycondensation of bisphenol-A and phosphoryl trichloride. The formed HPE was characterized by FTIR, 1H NMR and 31P NMR to confirm its structure. Then, a series flame retardant epoxy resins from bisphenol-A epoxy cured with HPE and bisphenol-A were prepared. The combustion behavior of the flame retardant epoxy resins was studied using limiting oxygen index (LOI) and cone calorimeter test. The LOI value increased from 23 to 32 when HPE, instead of bisphenol-A, was used as a curing agent. The cone calorimeter test data revealed that the cured bisphenol-A epoxy resin with HPE as a curing agent possessed improved flame retardancy. The photo graphs and scanning electron microscopy (SEM) of char residues confirmed the cone calorimeter results.  相似文献   

15.
Epoxy resins are, due to their excellent properties (such as chemical resistance, dimensional stability, and heat resistence), widely used in practice. The basic principle of curing epoxy resins with a hardener containing multiple amino groups is the crosslinking reaction between active hydrogen atoms in the hardener and the oxirane groups in the epoxy resin. This study deals with the synthesis and characterization of hexachloro‐cyclo‐triphosphazene derivative and its subsequent use for curing epoxy resins. The new hardener was prepared from hexachloro‐cyclo‐triphosphazene by nucleophilic substitution with isophorone diamine and its curing capability was compared with original isophorone diamine. The prepared derivative hexaisophorone diamino‐cyclo‐triphosphazene (HICTP) provided advantages over conventional curing system, as it improved mechanical properties as well as the flame resistance. Testing of the cured epoxy resin during burning was carried out using dual cone calorimeter, which enables more extensive monitoring of parameters in comparison with testing using oxygen index that has been used in many publications. The epoxy resin cured with the prepared phosphorus containing HICTP exhibits lower values for total heat release, amount of smoke released and oxygen consumed, which may cause a slower flame spread. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42917.  相似文献   

16.
A novel epoxy resin modifier, phosphorus‐containing epoxide siloxane (DPS) with cyclic phosphorus groups in the Si O network, was prepared from the reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) with polyhedral‐oligomeric siloxanes, which was synthesized by the sol–gel reaction of 3‐glycidoxypropyltrimethoxysilane. DPS was confirmed by Fourier transform infrared and 29Si NMR measurement, and then was employed to modify epoxy resin at various ratios, with 4,4‐diaminodiphenyl‐methane as a curing agent. In order to make a comparison, DOPO‐containing epoxy resins were also cured under the same conditions. The resulting organic–inorganic hybrid epoxy resins modified with DPS exhibited a high glass transition temperature (Tg), a good thermal stability, and a high limited oxygen index. In addition, the tensile strength of cured products was also rather desirable. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

17.
The ? P(O)‐H in 9,10‐dihydro‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) was used as an active group to react with the carbonyl group in 4,4′‐dihydroxybenzophenone (DHBP) to result a novel phosphorous‐containing biphenol compound (DOPO‐2OH). Phosphorous‐containing epoxy resins were therefore obtained from reacting DOPO‐2OH with epichlorohydrin or with diglycidylether bisphenol A. The synthesized compounds were characterized with FTIR, 1H and 31P NMR, elemental analysis, and epoxide equivalent weight titration to demonstrate the their chemical structures. Cured epoxy resins were prepared via thermal curing the epoxy resins with various curing agents. Thermal analysis results (differential scanning calorimetry and thermogravimetric analysis) revealed that these cured epoxy resins exhibited high glass transition temperatures and high thermal stability. High char yields at 700°C and high LOI (limited oxygen index) values were also found for the cured epoxy resins to imply that the resins were possessing high flame retardancy. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1697–1701, 2002  相似文献   

18.
通过聚甲基三乙氧基硅烷(PTS)与环氧丙氧丙基三甲氧基硅烷缩合产物对线型酚醛树脂进行接枝改性,并将其改性产物用于固化环氧树脂。通过制备一系列不同比例改性酚醛树脂并分别与环氧树脂固化。所得的环氧固化产物进行冲击强度、玻璃化转变温度、热失重等测试,结果表明,改性固化产物比未改性固化产物玻璃化转变温度提高了约30℃,冲击强度最高提高了36.6%,高温热稳定性也显著增强。改性产物实现了热稳定性和韧性的综合提升。  相似文献   

19.
A phosphorus‐containing epoxy resin was synthesized successfully by 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐oxide (DOPO) and bisphenol F epoxy resin (DGEBF) and its molecular structure was confirmed by FTIR spectra. The results of the liquid oxygen mechanical impact test indicated that the cured phosphorus‐containing epoxy resin did not show any reactions during the 20 times of mechanical impact, which revealed that it was compatible with liquid oxygen. Thermal properties of the cured epoxy resins were evaluated by differential scanning calorimetry and thermal gravimetric analysis. It was found that the cured phosphorus‐containing epoxy resin had a better thermal stability than DGEBF. The enhancement of thermal stability for the epoxy resin was favorable to improve liquid oxygen compatibility. The X‐ray photoelectron spectroscopy analysis confirmed that the mechanical impact resulted in phosphorus‐containing groups on the surface of the cured phosphorus‐containing epoxy resin thermally decomposed to form phosphoric oxyacid which was in accordance with the mechanism that organo‐phosphorus compounds could work in the condensed phase to inhibit the combustion. These results suggest that the phosphorus‐containing epoxy resin has the potential as the matrix of the liquid oxygen composite tank. POLYM. ENG. SCI., 55:651–656, 2015. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号