首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of a sustainable and environment friendly crop production system depends on identifying effective strategies for the management of tillage and postharvest crop residues. Three-year (2004–2007) field study was initiated on two soil types to evaluate the effect of straw management (burning, incorporation and surface mulch) and tillage (conventional tillage and zero tillage) before sowing wheat and four nitrogen rates (0, 90, 120 and 150 kg N ha−1) on crop yields, N use efficiency, and soil fertility in the northwestern India. Effect of tillage and straw management on nitrogen transformation in soils was investigated in a laboratory incubation study. In sandy loam, grain yield of wheat with straw mulch-zero-till (ZT) was 7% higher compared to when residues were burnt-ZT but it was similar to straw burnt-conventional till (CT), averaged across 3 years. In silt loam, grain yield of wheat with straw mulch-ZT was 4.4% higher compared to straw incorporated-CT, but it was similar to straw burnt-CT. Response to N application was generally observed up to 150 kg N ha−1 except in 2004–2005 on sandy loam where N response was observed up to 120 kg N ha−1, irrespective of straw and tillage treatments. In sandy loam, RE was lower (49%) for straw burnt-ZT than in other treatments (54–56%). In silt loam, RE was higher in straw mulch-ZT compared with straw incorporation-CT (65 vs. 58%). In sandy loam, AE was higher in straw burnt-CT and straw mulch-ZT compared with the other treatments (19.2 vs. 16.9 kg grain kg−1 N applied). In silt loam, AE was lower in straw incorporation-CT than in other treatments (16.0 vs. 17.6 kg grain kg−1 N applied). Rice yield and N uptake were not influenced by straw and tillage management treatments applied to the preceding wheat. Recycling of rice residue (incorporation and surface mulch) compared with straw burning increased soil organic carbon and the availability of soil P and K. There was more carbon sequestration in rice straw mulch with zero tillage (25%) than in straw incorporation with conventional tillage (17%). Soil N mineralization at 45 days after incubation was 15–25% higher in straw retention plots compared with on straw burnt plots.  相似文献   

2.
In agro-ecosystems, the relationship between soil fertility and crop yield is mediated by manure application. In this study, an 8-year field experiment was performed with four fertilizer treatments (NPK, NPKM1, NPKM2, and NPKM3), where NPK refers to chemical fertilizer and M1, M2, and M3 refer to manure application rates of 15, 30, and 45 Mg ha?1 year?1, respectively. The results showed that the NPKM (NPKM1, NPKM2, and NPKM3) treatments produced greater and more stable yields (4.95–5.45 Mg ha?1 and 0.59–0.75) than the NPK treatment (4.01 Mg ha?1 and 0.50). Crop yields under the NPKM treatments showed two trends, with a rate of decrease of 0.48–0.83 Mg ha?1 year?1 during the first 4 years and a rate of increase of 0.10–0.25 Mg ha?1 year?1 during the last 4 years. The soil organic carbon (SOC) significantly increased under all treatments. The estimated annual SOC decomposition rate was 0.35 Mg ha?1 year?1 and the equilibrium SOC level was 6.22 Mg ha?1. Soil total nitrogen (N), available N, total phosphorus (P) and available P under the NPKM treatments increased by 0.15–0.26, 15–33, 0.17–0.66 and 45–159 g kg?1, respectively, compared with the NPK treatment. Manure application mainly influenced crop yield by affecting the soil TN, available N, and available P, which accounted for up to 64% of the crop yield variation. Taken together, applying manure can determine or at least improve the effects of soil fertility on crop yield in acidic soils in South China.  相似文献   

3.
4.
Soil organic matter (SOM), besides influencing carbon (C) transfer between soils and atmosphere, impacts soil functional ability and its response to environmental and anthropogenic influences. We studied the impact of continuous application of rice straw and farmyard manure (FYM) either alone or in conjunction with inorganic fertilizers on aggregate stability and distribution of C and nitrogen (N) in different aggregate fractions after 7 years of rice–wheat cropping on a sandy loam soil. Macroaggregates (>0.25 mm) constituted 32.5–54.5% of total water stable aggregates (WSA) and were linearly related (R 2 = 0.69) to soil organic carbon content. The addition of rice straw and FYM significantly (P < 0.05) improved the formation of macroaggregates with a concomitant decrease in the proportion of microaggregates at all the three sampling depths (0–5, 5–10 and 10–15 cm). Macroaggregates had higher C and N density as compared to microaggregates. Application of rice straw and FYM improved C and N density in different aggregate sizes and the improvement was greatest in plots that received both rice straw and FYM each year. Application of FYM along with inorganic fertilizer resulted in a net C sequestration of 0.44 t ha−1 in the plough layer after 7 years of rice–wheat cropping. Carbon sequestration was greater (1.53 t ha−1) when both rice straw and FYM along with inorganic fertilizers were applied annually. It is concluded that addition of rice straw and FYM in rice–wheat system improves soil aggregation and enhances C and N sequestration in macroaggregates. This will help in sustainable rice–wheat productivity in the region.  相似文献   

5.
The mitigation of CO2 emission into the atmosphere is important and any information on how to implement adjustments to agricultural practices and improve soil organic matter (SOM) stock would be helpful. We studied the effect of tillage and residue management on soil carbon sequestration and CO2 emissions in loam soil cropped in a winter wheat–corn rotation in northern China. There were five treatments: mouldboard ploughing, rotary tillage and no-tillage with chopped residues (MC, RC and NC), additional no-tillage with whole residue (NW) and mouldboard ploughing without residue (CK). After 5 years of each tillage system, MC and RC had higher annual CO2 efflux from soil. The CO2 effluxes were correlated with the ratio of dissolved organic carbon to soil microbial biomass (DOC/MBC) among treatments. This effect may be due to less immobilization of soil carbon by microorganisms under long-time intensive tillage. Although both MBC and DOC showed seasonal variability, when averaged across the sampling period only MBC discriminated between treatments. After 5 years of tillage, all treatments except CK increased SOM (0.16–0.99 Mg C ha−1 year−1) at 0–30 cm depth and NC was the greatest, resulting from historical SOM depletion and large C return from recent residues. Despite the lowest CO2 flux being from the NW treatment, lower input residue from decreased biomass may have lowered C sequestration. To improve soil C sequestration in rotations, the input of residue and the CO2 emission should be balanced by adopting appropriate tillage and residue management.  相似文献   

6.
Given inherent qualities like N-fixation, P-solublization and nutrient recycling pulses remain the most preferred option for diversification of cereal-based rotations. A long-term experiment was used to assess the effect of including pulses in rice–wheat rotation on soil–plant nutrient dynamics under inorganic and organic nutrient management. Results revealed that pulses were equally responsive to organic and inorganic nutrient management while, growth of cereals especially wheat was restricted severely under organic production system due to low nutrient input. The annual input (kg ha?1) of N (103.6–160.8) and P (25.9–34.7) under organic treatment was almost ½ of the recommended inorganic rate, while organics supplied higher K and S. Under organic management, the apparent balance of all the nutrients was negative whereas, inorganic fertilization resulted in positive balance of N, P and Zn. Long-term inclusion of pulses in rice–wheat rotation significantly increased soil organic C and available nutrients thus, increased the nutrient uptake by cereals. Mungbean inclusion in rice–wheat rotation significantly (P ≤ 0.05) increased uptake of N (23.0 %), P (32.9 %) and K (21.1 %) by rice crop. Continuous inorganic fertilization enriched soil available N, P, Zn and B. While organic management maintained higher SOC, available K and S over inorganic treatment. Thus, the study suggested that under organic management N and P nutrition is limiting factor for cereals and needs inorganic supplementation. The study also indicates the need for including pulses in conventional rice–wheat system for optimum nutrient acquisition and long-term soil health management.  相似文献   

7.
Zinc deficiency is prevalent worldwide and is a barrier in achieving yield targets in crops. It is also now recognized as a leading risk factor for disease in humans in developing countries. Generally, soil application of 5–17 kg Zn ha−1 y−1 (25–85 kg zinc sulphate heptahydrate ha−1 y−1) or more is recommended for rice. However, in the developing rice-growing countries of Asia, zinc sulphate of desired quality is not readily available and is also quite expensive, and the farmers generally fail to apply Zn, resulting in crop yield loss in rice. Availability of zinc-enriched urea (ZEU) makes possible not only the availability of quality zinc, but also assures its application. Therefore, field experiments were conducted for two consecutive years at the research farm of Indian Agricultural Research Institute, New Delhi, India, during rainy (rice) and winter (wheat) seasons of 2004–2006 on a sandy clay-loam soil to study the effect of various concentrations of zinc enrichment of urea on productivity, zinc concentrations, its uptake and use indices of aromatic rice–wheat cropping system. Eight treatments comprising prilled urea (PU) and 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5% zinc-enriched urea, replicated three times, were compared in a randomized block design. The enrichment of PU was done through zinc oxide containing 80% zinc. The results of this study revealed that the zinc-enriched urea (ZEU) had a significant effect on growth, yield attributes and yields of aromatic rice. Highest values for all these attributes and yields were recorded at the highest enrichment (3.5%) of the PU with zinc. The highest zinc concentration and uptake in rice grain and straw were also significantly higher with the highest level (3.5%) of zinc enrichment. The highest total zinc uptake recorded was 1,168 and 1,353 g ha−1, during 2004 and 2005, respectively, with 3.5% ZEU. However, a major increase in grain yield of rice was recorded up to 1.0% zinc enrichment. The residual effect of zinc-enriched urea on succeeding wheat yield and zinc uptake was significant only at a higher level of zinc-enriched urea and only in the second year of study. Overall, 1.0% zinc-enriched urea recorded significantly higher productivity and zinc uptake over PU in the rice–wheat cropping system and is recommended for Delhi and adjoining areas. The recommendation is also made keeping in view the fact that with increased levels of zinc enrichment of urea, the partial factor productivity, agronomic efficiency, apparent recovery and physiological efficiency of applied zinc in a rice–wheat system decreased significantly. Considering all the economic parameters (benefit, benefit:cost ratio, IR gained IR−1 invested in zinc), 1.0% ZEU proved the most economic source for aromatic rice–wheat cropping system and therefore is recommended for rice–wheat cropping system in Delhi and adjoining areas of north India.  相似文献   

8.
Few studies have comprehensively evaluated the method of estimating the net ecosystem carbon budget (NECB). We compared two approaches for studying the NECB components on the crop seasonal scale as validated by the soil organic carbon (SOC) changes measured over the 5-year period of 2009–2014. The field trial was initiated with four integrated soil–crop system management (ISSM) practices at different nitrogen application rates relative to the local farmer’s practices (FP) rate, namely, N1 (25 % reduction), N2 (10 % reduction), N3 (FP rate) and N4 (25 % increase) with no nitrogen (NN) and FP as the controls. Compared with the FP, the four ISSM scenarios of N1, N2, N3 and N4 significantly increased rice yields by 9.5, 19, 33 and 41 %, while increasing the agronomic nitrogen use efficiency (NUE) by 71, 75, 99 and 79 %, respectively. The SOC sequestration potentials were estimated to be ?0.15 to 0.35 Mg C ha?1 year?1 from the net primary production minus heterotrophic respiration approach and ?0.32 to 0.67 Mg C ha?1 year?1 from the gross primary production minus ecosystem respiration approach for the 2010–2011 rice–wheat annual cycle. Similarly, the annual topsoil carbon sequestration rate over 2009–2014 was measured to be ?0.22 Mg C ha?1 year?1 for the NN plot and 0.13–0.42 Mg C ha?1 year?1 for the five fertilized treatments. Both NECB approaches provided a sound basis for accurate assessment of the SOC changes. Compared to the SOC sequestration rate from the FP, the proposed N3 and N4 scenarios increased the SOC sequestration rates while also improving rice yield and NUE.  相似文献   

9.
From a long-term fertilizer experiment on rice–rice cropping in Typic Endoaquept, established at the Central Rice Research Institute, Cuttack, India in 1969, effects of application of composted manure (5 Mg ha−1 year−1) and chemical fertilizers (N, NP, NK, and NPK twice in a year), in series without compost (C0) or with compost (C1) on changes in soil carbon and microbial pools were examined by comparing the soils archived in 1984 and those sampled in 2004. Mean concentrations of soil organic carbon (SOC) varied between 5.5 and 7.6 g kg−1 in 1984, and 6.8 and 10.8 g kg−1 in 2004, respectively. Temporal increases in the total amounts of carbon, which reflect the carbon sequestration potential of the soil followed the order: C1 + NK > C1 + NP = C1 + NPK > C1 + N = C1-control > C0 + NP = C0 + NK > C0 + NPK > C0-control > C0 + N. Fractions of H2O–C and K2SO4–C were higher in 1984, especially in those soil treated without compost. A reverse trend was observed in case of KMnO4–C and carbohydrate–C fractions. The continuous application of compost enhanced microbial biomass carbon as well as active microbial biomass carbon in 2004. Long-term application of chemical fertilizers in combination, rather than N alone, had beneficial effects on soil carbon and microbial pools. Compost application, even once a year, invariably led to higher increments in both soil carbon and microbial pools and the combinations of chemical fertilizers with compost generally showed comparable effects in the long-term.  相似文献   

10.
The field experiments were conducted at the Indian Agricultural Research Institute, New Delhi, India for 3 years from 2001–2002 to 2003–2004 to study the relative efficiency of diammonium phosphate (DAP) and Mussoorie rock phosphate along with phosphorus solubilizing bacteria inoculation (MRP + PSB) at different rates of application on productivity and phosphorus balance in a rice-rapeseed-mungbean cropping system. Phosphorus application significantly increased the productivity of rice-rapeseed-mungbean cropping system and resulted in an increase in 0.5 M NaHCO3 extractable P content in soil. The relative agronomic effectiveness (RAE) of MRP + PSB in relation to DAP as judged by the total productivity was 53–65% in the first cycle but reached 69–106% in the third cycle of the cropping system. The P balance (application—crop removal) was generally more positive for MRP + PSB than DAP and the highest P balance was recorded with an application of 52.5 kg P ha−1 as MRP + PSB, resulted in highest 0.5 M NaHCO3 extractable P content in soil. The present study, thus, shows that MRP + PSB could be usefully employed as an alternative to DAP in long term in the rice–rapeseed–mungbean cropping system.  相似文献   

11.
The effects of conservation tillage, crop residue and cropping systems on the changes in soil organic matter (SOM) and overall maize–legume production were investigated in western Kenya. The experiment was a split-split plot design with three replicates with crop residue management as main plots, cropping systems as sub-plots and nutrient levels as sub-sub plots. Nitrogen was applied in each treatment at two rates (0 and 60 kg N ha−1). Phosphorus was applied at 60 kg P/ha in all plots except two intercropped plots. Inorganic fertilizer (N and P) showed significant effects on yields with plots receiving 60 kg P ha−1 + 60 kg N ha−1 giving higher yields of 5.23 t ha−1 compared to control plots whose yields were as low as 1.8 t ha−1 during the third season. Crop residues had an additive effect on crop production, soil organic carbon and soil total nitrogen. Crop rotation gave higher yields hence an attractive option to farmers. Long-term studies are needed to show the effects of crop residue, cropping systems and nutrient input on sustainability of SOM and crop productivity.  相似文献   

12.
13.
14.
To date, the sustainability of wheat (Triticum aestivum)–soybean (Glycine max) cropping systems has not been well assessed, especially under Indian Himalayas. Research was conducted in 1995–1996 to 2004 at Hawalbagh, India to study the effects of fertilization on yield sustainability of irrigated wheat–soybean system and on selected soil properties. The mean wheat yield under NPK + FYM (farmyard manure) treated plots was ~27% higher than NPK (2.4 Mg ha−1). The residual effect of NPK + FYM caused ~14% increase in soybean yield over NPK (2.18 Mg ha−1). Sustainable yield index values of wheat and the wheat–soybean system were greater with annual fertilizer N or NPK plots 10 Mg ha−1 FYM than NPK alone. However, benefit:cost ratio of fertilization, agronomic efficiency and partial factor productivity of applied nutrients were higher with NPK + FYM than NPK, if FYM nutrients were not considered. Soils under NPK + FYM contained higher soil organic C (SOC), total soil N, total P and Olsen-P by ~10, 42, 52 and 71%, respectively, in the 0–30 cm soil layers, compared with NPK. Non-exchangeable K decreased with time under all treatments except NPK. Total SOC in the 0–30 cm soil layer increased in all fertilized plots. Application of NPK + FYM also improved selected soil physical properties over NPK. The NPK + FYM application had better soil productivity than NPK but was not as economical as NPK if farmers had to purchase manure.  相似文献   

15.
16.
17.
An unbalanced S and/or N fertilization may have low N and S use efficiency together with substantial negative implications for yield, nutrient losses and plant quality parameters. The effect of N and S fertilization and their interactions on N?CS balances, on N?CS losses and on some plant quality parameters were investigated in a field experiment with a wheat (Triticum aestivum L.)?Crapeseed (Brassica napus L.)?Cwheat rotation (2005?C2008). The study was conducted under humid Mediterranean climatic conditions on a potentially S deficient soil. The effects of N (0, 140, 180, 220?kg?N?ha?1 in wheat; 0, 100, 140, 180, 220?N?ha?1 in rapeseed) combined with S fertilizer rates (0, 16 and 32?kg S ha?1 in wheat and 0, 30, 60?kg S ha?1 in rapeseed) were studied. Nitrogen fertilization increased yield by 55?% in wheat and 60?% in rapeseed, N concentration in grain and straw and S concentration in the grain of wheat. However, it led to a reduction in the S concentration of straw and the oil content of the rapeseed seed. The S application did not increase yield but had a positive effect on S concentration in the wheat straw. Glucosinolate concentration, a potentially toxic secondary metabolite in rapeseed, was not influenced by N or S applications. Nitrate leaching tended to increase with N application while sulphate leaching decreased. A net N and S mineralization was observed in each growing season, except for the first year in which a net S immobilization was observed. To make N fertilizer recommendations, the N mineralization from the previous crop residues should be taken into account. For S fertilizer recommendations, N supply is the most important item both from a qualitative point of view (N/S ratio in wheat grain) and an environmental point of view (S leaching).  相似文献   

18.
The recovery of soil mineral nitrogen (N) by crops, and its subsequent utilisation for dry matter (DM) production may be increased when the application of N is postponed until after crop emergence. The significance of this strategy for silage maize was studied in nine field experiments on Dutch sandy soils from 1983 to 1988. In five experiments the effect of slurry applied before planting at a rate of circa 66 m3 ha-1, was compared to the effect of a similar rate of which half was applied before planting and half at the 4–6 leaf stage. In the 4-6 leaf stage slurry was either injected or banded. In four other experiments the effect of mineral fertilizer-N splitting was studied. In these experiments, 30 m3 ha-1 cattle slurry, applied before planting, was supplemented with mineral fertilizer-N at rates ranging from 40 to 160 kg ha-1, either fully applied before crop emergence or split. When split, 40 kg ha-1 of the mineral fertilizer-N rate was banded at the 4–6 leaf stage. According to balance sheet calculations, substantial losses of slurry N and mineral fertilizer-N occurred during the growing season. Losses were compensated for, however, by apparent mineralization, ranging from 0.34 to 0.77 kg N ha-1 day-1. Split applications of cattle slurry had a significant positive effect on the DM yield in two out of five experiments compared to the conventional non-split application, but only when the post-emergence slurry application was banded which is no longer in accordance with present legislation. Split applications of mineral fertilizer-N had a significant positive effect in one experiment where rainfall was excessive but not in the others. The results provide insufficient evidence to recommend farmers to split applications. Soil mineral N sampling at the 4–6 leaf stage should hence be considered a control on the appropriateness of early N applications after exceptional weather conditions rather than a routine observation on which the post-emergence N dressing is to be based in a deliberate splitting strategy. Our data suggest that the financial return of a 40 kg ha-1 supplementation with mineral fertilizer-N, was questionable when more than 175 kg N ha-1 were found in the upper 0.6 m soil layer at the 4–6 leaf stage.  相似文献   

19.
In southern Africa, tillage research has focused on rainfed smallholder cropping systems, while literature on high-input irrigated cropping systems is limited. We evaluated the effects of conventional (CT), minimum (MT) and no-till (NT) tillage systems on soil organic carbon (SOC), bulk density, water-stable aggregates (WSA), mean weighted diameter (MWD) and crop yields in an irrigated wheat–cotton rotation. Soil data were monitored in the first and final year, while yields were monitored seasonally. Average bulk densities (1.5–1.7 Mg m−3) were similar among tillage systems, but often exceeded the critical limit (1.60 Mg m−3) for optimum root growth. Conversion from CT to MT and NT failed to ameliorate the high bulk densities associated with the alluvial soil. SOC (g kg−1) at 0–15 cm was higher (P < 0.05) under MT (3.9–5.8) and NT (4.2–5.6) than CT (2.9–3.3). Corresponding horizon SOC stocks (Mg C ha−1) for the tillage treatments were; 9.3–13.9 (MT), 9.3–13.5 (NT) and 7.3–7.7 (CT). In the final year, significant (P < 0.05) tillage effects on SOC stocks were also observed at 15–30 cm. Cumulative SOC stocks (Mg C ha−1) in the 0–60 cm profile were higher (P < 0.05) under MT (32.8–39.9) and NT (32.9–41.6) than CT (27.8–30.9). On average, MT and NT sequestered between 0.55 and 0.78 Mg C ha−1 year−1 at 0–30 cm depth, but a net decline (0.13 Mg C ha−1 year−1) was observed under CT. At 0–30 cm, MT and NT had higher (P < 0.05) MWD (0.19–0.23 mm) and WSA (2.3–3.5%) than CT (MWD: 0.1–0.12 mm, WSA: ≈1.0%). Both MWD and WSA were significantly (P < 0.05) correlated to SOC. Seasonal yields showed significant (P < 0.05) tillage effects, but 6-year mean yields (t ha−1) were similar (CT: 4.49, MT: 4.33, NT: 4.32 for wheat; CT: 3.30, MT: 2.82, NT: 2.83 for cotton). Overall, MT and NT improved soil structural stability and carbon sequestration, while impacts on crop productivity were limited. Therefore, MT and NT are more sustainable tillage systems for the semi-arid regions than conventional tillage. S. Chakanetsa—Deceased.  相似文献   

20.
For the first time, the effects of microwave and ultrasonic treatments and an alternating electric field on poly(N-vinyl caprolactam) (PVCL40) both in the original and in the composite with nanoscale anatase have been studied. Comparison of the results of studying the samples by X-ray diffraction, IR spectroscopy, differential scanning calorimetry (DSC) before and after treatments allowed us to identify, and explain the response of objects to different types of effects with a change in their characteristics. Analysis and comparison of the results do not exclude the misorientation of the PVCL40 domains in thin films (microwave processing), which becomes flat-ordered after their rubbing, the destruction of the PVCL40 and the disorder of the side substituent are found, accompanied by a change in the periodicity chains (microwave processing, electric field), a decrease in the water content in the system (microwave processing) and amorphization of nanoscale anatase (microwave processing, electric field) were revealed. The implementation of the revealed effects as response to microwave, ultrasonic, and electric field treatments on a similar type of polymers with a different composition and structure is not ruled out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号