首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
针对某轿车追尾碰撞试验中后纵梁支架的耐撞性优化问题,运用中心复合试验方法合理分布试验点,并结合最小二乘法建立了以三对吸能槽位置为形状变量的刚性墙最大位移、撞击力峰值的响应面模型。采用遗传优化算法对响应面模型进行了优化计算。结果表明,在不影响后纵梁总成和车身其他结构的条件下,优化后的后纵梁支架有较好的吸能槽位置排布,其耐撞性有了显著提升。该优化方法能用较小的计算成本来有效预测和指导工程实践中产品的耐撞性设计,在车身结构和汽车零部件的耐撞性设计中具有一定的实用与推广价值。  相似文献   

2.
《机械强度》2017,(1):57-62
连续变截面薄板(Tailor Rolled Blank,TRB)是新型的厚度连续变化的板材,它是实现轻量化的有效途径之一。基于TRB技术,结合车身碰撞力的传递路径及载荷流的合理分布的设计方法,以某款SUV车侧面碰撞中的主要关重件为例,对其结构进行优化设计。研究表明:应用新型TRB板材,在侧面碰撞过程中降低了整车的变形和胸部以及骨盆处侵入速度峰值,保证在耐撞性不减的前提下,整车质量减轻了5.5 kg,零件数量减少了5个。相应地也减少焊接工艺、生产工序,同时实现耐撞性和减量化的双重目标。  相似文献   

3.
为改善汽车的耐撞性、提升汽车的轻量化程度,从结构改进的角度对汽车前防撞梁进行优化设计。建立汽车前防撞梁正面100%碰撞模型,以前防撞梁横梁和吸能盒厚度为设计变量,以碰撞力峰值作为约束条件,构建以前防撞梁总成吸能量最大化、质量最小化的多目标优化模型。采用哈默斯利法进行试验设计,通过拟合得到近似模型。近似模型与仿真值误差不高于5%。采用全局响应面法对多目标问题进行优化,得到Pareto最优解集。结果表明,优化后前防撞梁吸能量提高了15.8%,质量降低了6%,碰撞力峰值降低了20.3%,比吸能提高了23.1%。优化设计显著改善了汽车的耐撞性并提升了汽车的轻量化程度。  相似文献   

4.
矩形薄壁空心直梁是汽车纵梁经常采用的结构形式,并且是承受正面碰撞的主要部件,其结构的耐撞性及碰撞吸能优化是现代汽车研究的重要内容.以矩形薄壁梁为研究对象,基于动态有限元分析模型,利用LS-DYNA软件中的OPT模块技术,研究矩形薄壁梁横截面的边长比变化对其耐撞性能的影响,对薄壁直梁在轴向冲击载荷下的耐撞性能进行了优化仿真.优化结果表明,当矩形两个边长的比值为0.6时,结构的碰撞力峰值最小,吸收的塑性变形能最大,具有最好的耐撞性能.  相似文献   

5.
为了对全框式副车架侧边纵梁结构进行耐撞性优化设计,以副车架侧边纵梁结构参数为变量,建立了该结构耐撞性和轻量化优化问题的数学模型。运用方差分析法(ANOVA)选择对副车架侧边纵梁耐撞性和轻量化影响显著的结构因子作为主要设计变量,采用正交试验设计方法进行试验设计;运用LS-dyna软件进行碰撞模拟;根据有限元仿真结果建立了响应面近似模型,并对该近似模型解决该问题的可靠性进行了验证,结果表明,所建立的响应面近似模型适合解决组合优化问题。优化设计后的副车架侧边纵梁能在提高耐撞性能的同时,保持较好的轻量化水平。  相似文献   

6.
耐撞性的分析一般都是以板厚尺寸为变量,文中增加了截面形状变量对车身耐撞性影响的研究。首先,分析某型车初始正面全宽耐撞性能并对比试验进行标定;其次,依据前舱结构的比吸能筛选变量并进行参数化和试验设计;最后,为了提高耐撞性优化的效率,通过拟合Kriging近似模型,采用多岛遗传算法进行优化。优化结果表明:通过优化车身关键结构的截面形状和板厚,使得B柱峰值加速度和主要吸能梁结构的质量分别改善了1.23%和15.51%。  相似文献   

7.
以某汽车的前纵梁为例,参照我国C-NCAP中车辆正面碰撞测试要求,建立汽车前纵梁碰撞简化模型作为有限元仿真模型,并通过正交试验采样和多项式回归法构建响应面近似模型,将连续变截面板技术应用于前纵梁轻量化设计。结果表明:基于连续变截面板结构的汽车前纵梁相对于等厚板前纵梁具有更好的耐撞性,并且具有明显的减重效果,前纵梁质量减少了3.85kg,减重17.7%。  相似文献   

8.
针对某电动汽车前机舱吸能不足,前纵梁后端抗弯性能薄弱等问题,参照法规及C-NCAP要求,运用Hypermesh和LS-DYNA软件建立了全宽正面碰撞有限元模型,并对该电动汽车前机舱进行了耐撞安全性分析.采取了“改变前纵梁内部加强板的位置、并改变相应焊点”的优化措施,对优化前后的机舱吸能、刚性墙撞击力、车身加速度、前纵梁抗弯性能等进行了比较.仿真计算结果表明:在几乎没有增加成本的前提下,该结构在优化后碰撞吸能提高3.5%,刚性墙撞击峰值力降低11.73%,峰值加速度降低3.8%,左纵梁后端抗弯能力提高28.6%,右纵梁后端抗弯能力提高4.7%,实现了良好的优化效果.  相似文献   

9.
胡贇  李文凤  宋敏杰 《机械设计与制造》2021,368(10):207-210,214
车辆耐撞性是一个涉及多因素的强非线性问题,而传统响应面模型柔韧性又不足.为克服传统响应面法在拟合车辆耐撞性问题输入与输出之间的映射关系所带来的不精确性和耗时性,这里通过建立一个经试验验证准确性的耐撞性仿真模型,提出采用均匀设计法来提高车辆耐撞性仿真试验的代表性并减少仿真试验次数.通过采用一个具有良好韧性的三层神经网络来拟合车辆耐撞性问题输入与输出之间的映射关系,并基于多目标遗传优化算法NSGA-Ⅱ,得到了一组以峰值加速度、B柱最大位移以及吸能比为耐撞性指标的Pareto解集.优化结果显示,所提方法能够高效、精确的完成车辆耐撞性优化.  相似文献   

10.
基于双响应面模型的碰撞安全性稳健性优化设计   总被引:10,自引:0,他引:10  
建立稳健的车体耐撞结构是提高汽车碰撞安全性的有效途径.传统的耐撞性优化设计,由于忽视制造工艺、材料特性和边界条件中存在的不确定因素,导致汽车碰撞安全性能不够稳健.近年来,稳健性设计得到广泛的关注,并在汽车工业中得到应用.将稳健性设计方法应用到汽车碰撞安全性设计中,以某轿车的前纵梁为研究对象,运用双响应面方法对其进行稳健性优化设计.采用拉丁超立方抽样(Latin hypercube sampling,LHS)方法和最小二乘方法创建碰撞响应的二阶多项式双响应面模型,将材料特性作为不确定性因素.稳健性优化后,对前纵梁碰撞性能的稳健性与优化前进行对比分析.分析结果表明,该稳健性设计方法精度较高;经稳健性优化后,前纵梁碰撞性能的稳健性获得了显著提高,且质量减少了3.32%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号