首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 821 毫秒
1.
Zinc‐loaded whey protein nanoparticles were prepared by enzymatic cross‐linking whey protein followed by ethanol desolvation. Whey protein isolate (WPI) was denatured by heating (80 °C for 15 min) at pH 7.0 and then cross‐linked by transglutaminase at 50 °C for 4 h while stirring. Transglutaminase was inactivated by heating at 90 °C for 10 min, and then, ZnSO4·7H2O (1–10 mm ) was added. Zinc‐loaded whey protein nanoparticles were formed by adding ethanol at one to five times the volume of the protein solution at pH 9.0. The desolvated solutions were diluted by adding distilled water at ratio of 1:100 (w/v) immediately after desolvation. Dynamic light scattering (DLS) data showed that the particle size of zinc‐loaded whey protein nanoparticles increased with the amount of zinc and the volume of ethanol. Scanning electron microscopy micrographs revealed an almost spherical morphology for zinc‐loaded whey protein nanoparticles. The zinc loading efficiency was determined ranging from 76.7% to 99.2%. In vitro test data showed that the zinc release rate was low in simulated gastric fluid but high in simulated intestinal fluid. The results indicated that enzymatic cross‐linked whey protein nanoparticles may be used as a good vehicle to deliver zinc as a supplement.  相似文献   

2.
Ginsenosides was microencapsulated using heat‐induced polymerised whey protein as wall material. The entrapment yield was 95.46 ± 1.95% and release rates were about 20% and 100% in gastric and intestine juices, respectively. Microencapsulated ginsenosides (0.03% ginsenosides, w/v) were used for fermented milk formulation. Samples with microencapsulated ginsenosides had much higher acceptability compared with those with ginsenoside extract (P < 0.01). Addition of microencapsulated ginsenosides significantly decreased the syneresis of the sample (P < 0.01). The probiotics remained above 106 CFU mL?1 during the first 6 weeks, and no significant difference was observed in probiotics population during 10‐week storage for all samples. SEM micrograph revealed that addition of microcapsules did not change the structure of the samples considerably. The polymerised whey protein‐based microencapsulation might be an effective technique to deliver ginsenosides to small intestine through stomach. It also masked bitter taste and improved the colour of the fermented milks containing ginsenosides.  相似文献   

3.
There is a market demand for nonfat fermented goats’ milk products. A nonfat goats’ milk yogurt containing probiotics (Lactobacillus acidophilus, and Bifidobacterium spp.) was developed using heat‐treated whey protein concentrate (HWPC) as a fat replacer and pectin as a thickening agent. Yogurts containing untreated whey protein concentrate (WPC) and pectin, and the one with only pectin were also prepared. Skim cows’ milk yogurt with pectin was also made as a control. The yogurts were analyzed for chemical composition, water holding capacity (syneresis), microstructure, changes in pH and viscosity, mold, yeast and coliform counts, and probiotic survivability during storage at 4 °C for 10 wk. The results showed that the nonfat goats’ milk yogurt made with 1.2% HWPC (WPC solution heated at 85 °C for 30 min at pH 8.5) and 0.35% pectin had significantly higher viscosity (P < 0.01) than any of the other yogurts and lower syneresis than the goats’ yogurt with only pectin (P < 0.01). Viscosity and pH of all the yogurt samples did not change much throughout storage. Bifidobacterium spp. remained stable and was above 106CFU g‐1 during the 10‐wk storage. However, the population of Lactobacillus acidophilus dropped to below 106CFU g‐1 after 2 wk of storage. Microstructure analysis of the nonfat goats’ milk yogurt by scanning electron microscopy revealed that HWPC interacted with casein micelles to form a relatively compact network in the yogurt gel. The results indicated that HWPC could be used as a fat replacer for improving the consistency of nonfat goats’ milk yogurt and other similar products.  相似文献   

4.
Reconstituted goat whey was fermented with the starter Streptococcus thermophilus TA‐40 in co‐culture with four probiotic adjuncts (independent treatments): Lactobacillus casei BGP93 (T1), Lactobacillus paracasei BGP1 (T2), Lb. paracasei LPC37 (T3) and Lactobacillus rhamnosus LR32 (T4). Lactobacillus populations were higher than 7 log cfu/mL after fermentation and storage. Proteolysis increased significantly (P < 0.05) during fermentation in all trials. Relative amount of low‐molecular‐weight protein fractions (<6.5 kDa) increased in goat whey trials with T1, T3 and T4 during fermentation and storage. The goat whey powder was considered a potential substrate for starter and probiotic cultures, which raised the opportunities to upgrade this by‐product into a functional food.  相似文献   

5.
Prebiotic soluble fibre (fructooligosaccharides)‐incorporated whey protein crisps were produced by low‐shear supercritical fluid extrusion (SCFX), which utilises supercritical CO2 as an expansion agent instead of steam. Protein crisps with desirable qualities were obtained with a formulation containing 8% prebiotic fibre and 60% whey protein concentrate (WPC‐80), which gave the final product with a protein content of 49.6% (w/w). A maximum of 70% WPC‐80 and 8% prebiotic fibre could be incorporated to produce expanded protein crisps; however, increasing WPC‐80 from 50% to 70% decreased the end‐product expansion ratio from 3.1 to 1.2 and increased the product hardness and piece density from 1.3 to 2.8 kN and 0.63 to 0.75 g mL?1, respectively. Addition of 8% prebiotic fibre did not affect the textural qualities of final products. The process produced an expanded protein matrix with unique internal microstructure of uniformly distributed closed cells. Amino acid analysis indicated that 90% of the total lysine and 92% of the total essential amino acids were retained after SCFX processing and oven‐drying, indicating the preservation of protein nutritional quality during the process.  相似文献   

6.
Composite films prepared by casting wheat starch and whey‐protein isolate at proportions of 100–0%, 75–25%, 50–50%, 25–75% and 0–100% were characterised. Combination of both substances gave continuous and homogeneous films. The more the starch is in a film, the more dull is the appearance. The highest water adsorption was observed for pure whey‐protein films and the lowest for pure wheat starch films with the final water content of 0.264 and 0.324 g water g d.m.?1, respectively. An exponential equation well fitted the experimental data of water vapour kinetics (R≥ 0.99). The highest values of thickness and elongation at break were observed for films obtained by blending of wheat starch and whey protein. With the increasing content of whey‐protein isolate, the values of the swelling index and tensile strength increased from 34.31% to 71.01% and from 2.29 to 8.90 MPa, respectively. The values of water vapour permeability depended on humidity conditions and decreased slightly with the increasing content of whey‐protein isolate.  相似文献   

7.
In 50% sugar replaced with 0.05% stevia‐added Kulfi, whey protein concentrate (WPC) at 0, 2, 3 and 4% levels were separately incorporated. Increase in WPC level resulted in significant (< 0.05) decrease in freezing point, melting rate, hardness and moisture percentage and significant (< 0.05) increase in specific gravity, protein percentage and total calorie content in the product. Among 0, 2, 3 and 4% WPC‐added Kulfi, 3% WPC‐added Kulfi was adjudged as best by a panel of judges. Above 3% WPC addition, the product was very soft and possessed undesirable whey flavour.  相似文献   

8.
The aim of present research was to optimise the conditions to develop nutritionally rich honey powder using honey, whey protein concentrate (WPC), aonla (Emblica officinalis. Gaertn) and basil (Ocimum sanctum) extract with the help of co‐current spray drier. Response surface methodology was applied to study the effects of inlet temperature (160–180 °C), whey protein concentrate (25–35%), feed flow rate (0.08–0.13 mL s?1), aonla extract (6–8%) and basil extract (6–8%) on product responses, viz. bulk density, hygroscopicity, antioxidant activity (AOA), total phenolic content (TPC) and vitamin C. Statistical analysis revealed that independent variables significantly affected all the responses. The results demonstrated that increasing inlet temperature lowered the bulk density, hygroscopicity, AOA, TPC and vitamin C, whereas addition of aonla extract and basil extract increased the AOA (82.73%), TPC (63.27%) and total vitamin C content (94.89%) as these functional compounds were encapsulated by WPC. Similarly, with increase in feed flow rate and WPC, there was increase and decrease in the bulk density and hygroscopicity, respectively. The recommended optimum spray‐drying conditions were inlet air temperature (170 °C), feed rate (0.11 mL s?1), whey protein concentrate (35%), aonla (8%) and basil extract (6%).  相似文献   

9.
A study was conducted to develop pearl millet‐based extruded snacks with whey protein concentrate (WPC) to enhance its acceptability and nutritional value. Pearl millet grits (841 μ) was extruded with different levels (0%, 2.5%, 5.0% and 7.5%) of WPC at constant feed rate (10.5 kg h?1) and moisture content (14%). Addition of whey protein at 7.5% level significantly ( 0.05) increased Tg from 75.1 ± 0.26 °C to 120.5 ± 1.28 °C and Tm from 89.1 ± 1.51 °C to 158.7 ± 1.37 °C, which resulted in less expanded and harder extrudates. The expansion index of extrudates was negatively correlated ( 0.05) with protein (r = ?0.940), bulk density (r = ?0.949), hardness (r = ?0.971) and breaking strength (r = ?0.921), while positively correlated ( 0.05) with overall acceptability (OAA; r = 0.988). Keeping in view the nutritional, textural and consumer's acceptability, incorporation of 5% WPC in pearl millet grits (841 μ) was recommended for preparation of acceptable expanded snacks.  相似文献   

10.
In this study, the in vivo allergenicity of bovine beta‐lactoglobulin (BLG) in peptic whey protein hydrolysates generated during microwave and conventional heating treatments was assessed. The allergenicity of the hydrolysates was explored by studying the reaction of the murine jejunum from previously immunised Balb/c mice to treated BLG in an Ussing chamber. Intestinal anaphylactic reactions after stimulation of the gut‐associated immune system are a good indicator of potential in vivo allergenicity of whey hydrolysates. Fifty‐two per cent of BLG was hydrolysed by pepsin after only 3 min of microwave irradiation at 200 watts (W), yet it remained intact under conventional heating. Far‐ and near‐UV circular dichroism spectra indicated significant changes in BLG secondary and tertiary structures with microwave irradiation at 200 W. Pepsin whey protein hydrolysates obtained with microwave irradiation at 200 W for 3 min did not stimulate secretion of chloride in the Ussing chamber, as shown by the intensity of the short current values recorded (27.86 μA cm?2), compared to the conventional pepsin hydrolysates (68.21 μA cm?2). This demonstrates the low allergenicity of whey protein hydrolysates generated in this manner. These results confirm that microwave treatment combined with peptic hydrolysis could be applied to produce low allergenicity milk peptides.  相似文献   

11.
This study was carried out to examine the proteolytic and angiotensin‐converting enzyme (ACE‐I) activities of probiotic lactic acid bacteria (LAB) as influenced by the type of media, fermentation time, strain type and media supplementation with a proteolytic enzyme (Flavourzyme®). Lactobacillus casei (Lc210), Bifidobacterium animalis ssp12 (Bb12), Lactobacillus delbrueckii subsp. bulgaricus (Lb11842) and Lactobacillus acidophilus (La2410) were grown in 12% of reconstituted skim milk (RSM) or 4% of whey protein concentrates (WPC‐35) with or without combination (0.14%) of Flavourzyme® for 12 h at 37 °C. All the strains were able to grow in both media depending on type of strains used and fermentation time. All the strains showed higher proteolytic activity and produced more antihypersensitive peptides when grown in RSM medium at 12 h, when compared to WPC. Combination with Flavourzyme® also increased LAB growth and proteolytic and ACE‐I activities. Of the four strains used, Bb12 and La2410 outperformed Lc210 and Lb11842. The highest ACE‐I activity and proteolytic activity were found in B. animalis ssp12 combined with Flavourzyme®. Flavourzyme® led to an increase in the production of bioactive peptides with ACE‐I activity during 12 h at 37 °C.  相似文献   

12.
The objective of the present study was to evaluate the efficacy of combined cryoprotectants (sucrose + sorbitol) and whey protein isolate (WPI) hydrolysates to inhibit protein oxidation and quality loss in common carp (Cyprinus carpio) surimi during frozen storage at ?25 °C. With increasing storage time, the carbonyl content of myofibrillar proteins increased from 4.02 nmolmg‐1 protein (0 day) to 7.25, 6.31, 5.26 and 4.83 nmol mg?1 protein (180 days; < 0.05) for the control and samples with cryoprotectants, with cryoprotectants + WPI hydrolysates and with cryoprotectants + propyl gallate, respectively; protein surface hydrophobicity and turbidity increased in a similar trend, while sulfhydryl content, Ca‐ATPase activity, protein solubility and protein thermal stability decreased (< 0.05). These results suggest that treatments with combined cryoprotectants and antioxidative WPI hydrolysates offer an effective approach to reducing the extent of protein oxidation in common carp surimi, thereby limiting protein structural changes known to impair texture of surimi products.  相似文献   

13.
The present study was conducted to analyse the physiochemical properties of Indian paneer whey. High concentration of minerals such as potassium, calcium, zinc and sodium, as NaCl, were observed which indicates the suitability of paneer whey in the preparation of beverages. A central composite rotatable design (CCRD) of response surface methodology (RSM) was employed to optimise the hydrolysis of lactose from whey using cold‐active β‐galactosidase of Thalassospira frigidphilosprofundus. Results indicated that 80% of lactose was hydrolysed at pH of 6.5 at 20 °C in 40 min in comparison with 40% at 30 °C. This emphasises the potential use of cold‐active β‐galactosidase in dairy industry.  相似文献   

14.
A central composite design with a quadratic model was used to investigate the effects of three independent variables involved in the synthesis of iron‐encapsulated cold‐set whey protein isolate gel (WPI) on encapsulation efficiency (EE) and L*, a*, b* colour characteristics. The optimal conditions for maximum EE with minimum colour alteration were determined as 6.8% WPI, 18.8 mM iron and pH 7. In an in vitro gastrointestinal assay, only about 28% of the encapsulated iron was released in the gastric condition (with pepsin at pH 1.2), compared to 95% in the intestinal condition (with pancreatin at pH 7.5).  相似文献   

15.
In this study, the changes during storage in the physicochemical, textural and sensory properties of nonfat yoghurts fortified with whey proteins, namely whey protein concentrates (WPC), whey protein isolates and whey protein hydrolysates, were investigated. Enrichment of nonfat yoghurt with the whey protein additives (1% w/v) had a noticeable effect on pH, titratable acidity, syneresis, water‐holding capacity, protein contents and colour values on the 14th day of storage (< 0.01). The addition of whey proteins to the yoghurt milk led to increases in the hardness, cohesiveness and elasticity values, resulting in improved textural properties. The addition of WPC improved the texture of set‐type nonfat yoghurt with greater sizes in the gel network as well as lower syneresis and higher water holding capacity. This study suggests that the addition of whey protein additives used for fortification of yoghurt gave the best textural and sensory properties that were maintained constant during the shelf life.  相似文献   

16.
This study was performed to investigate the effects of mungbean protein isolates (MPI) as a meat/water binder on the MTGase‐mediated porcine myofibrillar protein (MP) gels at 0.15, 0.3, and 0.45 m salt concentrations. The general property of MP gel was evaluated by pH, cooking loss (CL) (%) and gel strength (gf). Protein–protein interactions among MPI, MTGase, and MP during cooking were also assessed using gel electrophoresis, thermal analysis and microstructure. When salt content was reduced, gel CL (%; < 0.05) was increased while pH and gel strength (gf) values were decreased (< 0.05). Addition of MTGase to MP increased pH, CL (%), and gel strength (gf) values, while co‐addition of MTGase and MPI induced synergistic effects on the MP gel strength (gf; ≥0.3 m salt concentration; < 0.05). In scanning electron micrograph images, increase of salt concentrations made MP gels more swollen and interwoven or conglomerated, regardless of treatment. In conclusion, addition of MPI and MTGase strengthened gel‐forming ability and improved cooking yield of MP gel at salt concentration (≥0.3 m ).  相似文献   

17.
Properties of whey protein concentrate stabilised emulsions were modified by protein and emulsion heat treatment (60–90 °C). All liquid emulsions were flocculated and the particle sizes showed bimodal size distributions. The state and surface properties of proteins and coexisting protein/aggregates in the system strongly determined the stability of heat‐modified whey protein concentrate stabilised emulsions. The whey protein particles of 122–342 nm that formed on protein heating enhanced the stability of highly concentrated emulsions. These particles stabilised protein‐heated emulsions in the way that is typical for Pickering emulsions. The emulsions heated at 80 and 90 °C gelled due to the aggregation of the protein‐coated oil droplets.  相似文献   

18.
Whey protein is a group of globular proteins from cheese whey. It is a safe, degradable, renewable and abundant natural material compared with synthetic polymers. Native whey proteins do not exhibit good adhesive properties due to their low molecular weights and compact globular structures; however, under thermal treatment, these globular structures can be unfolded to form polymers or aggregates through intermolecular disulphide bonds via a thiol–disulphide interchange. Heat‐induced whey protein polymer exhibits good adhesive properties. With the addition of a cross‐linker, stabiliser or co‐binder, different types of wood and paper adhesives can be formulated using polymerised whey protein.  相似文献   

19.
Corn is a major grain produced in northern China. Corn‐based functional food products are very limited. In this study, a symbiotic corn‐based yogurt‐like product was developed. Corn milk was prepared through grinding, extrusion and milling, and hydration processes. Corn extrudate was prepared under the optimized conditions of corn flour particle size <180 μm, moisture content of 15% and extrusion temperature at 130 °C. The corn milk was prepared from 8% corn extrudate suspension and then milled twice with 0.1% glyceryl monostearate and 0.1% sucrose ester as emulsifiers. The corn milk was mixed with sugar (5%), glucose (2%), soy protein isolate (0.75%), inulin (1%), polymerized whey protein (0.3%) and xanthan gum (0.09%) as thickening agents. The mixture was fermented at 35 °C for 6 h using a probiotic starter culture containing L. plantarum. Chemical composition (%) of the symbiotic corn‐based yogurt‐like product was: total solids (17.13 ± 0.31), protein (1.12 ± 0.03), fat (0.30 ± 0.05), carbohydrates (15.14 ± 0.19), and ash (0.16 ± 0.02), respectively. pH value of this symbiotic product decreased from 4.50 ± 0.03 to 3.88 ± 0.13 and the population of L. plantarum declined from 7.8 ± 0.09 to 7.1 ± 0.14 log CFU/mL during storage at 4 °C. SDS‐PAGE analysis showed that there were no changes in protein profile during storage. Texture and consistency were also stable during the period of this study. It can be concluded that a set‐type corn‐based symbiotic yogurt‐like product with good texture and stability was successfully developed that would be a good alternative to the dairy yogurt.  相似文献   

20.
The effect of different amounts of whey protein concentrate (50–150 g kg?1), low and high methoxyl pectin (5–15 g kg?1) on the rheological, thermal, structural properties and sensory quality of mashed potatoes prepared from dried mashed potatoes flakes was investigated. The response surface technique was used to analyse the effects of whey protein concentrate and pectin simultaneously on the consistency index, flow behaviour index, apparent viscosity and Casson plastic viscosity. Both whey protein concentrate and pectin decreased the consistency of the mashed potatoes weakening its structure in all concentrations assayed. Results suggest that whey protein concentrate interacts with high methoxyl pectin through non‐covalent interactions. Based on the sensory evaluation results, up to 100 g kg?1 whey protein concentrate with 15 g kg?1 of low methoxyl pectin and 15 g kg?1 of high methxyl pectin could be incorporated to dried mashed potatoes flakes without losing significantly the sensory quality of the product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号