首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
Vapor phase mercury concentration was determined daily for 1 year (Jan. 1996-Jan. 1997) in order to present the levels of atmospheric mercury in Kagoshima City and to estimate the influence of mercury emission from Sakurajima Volcano, southern Kyushu, Japan. The atmospheric mercury was collected on a porous gold collector at Kagoshima University and was determined by cold vapor atomic absorption spectrometry; Kagoshima University of Kagoshima City is located approximately 11 km west of Sakurajima Volcano. The mercury concentration obtained was in the range 1.2-52.5 ng m(-3) (mean 10.8 ng m(-3), n = 169). The atmospheric concentration varied from season to season; the concentration was high in summer and lower in winter. A linear relation was obtained by plotting ln[Hg/ng m(-3)] vs. 1/T for the north, south and west winds with correlation coefficients of -0.76, -0.79 and -0.83, respectively, but no such dependency was found for the east wind (r = -0.035). When the wind is blowing from the east, Kagoshima City is on the leeward side of the volcano. The impact of the fumarolic activity of the volcano on ambient air in the city was evident in the disappearance of temperature dependency with the appearance of the east wind. Atmospheric mercury concentration except for the east wind was considered to be background levels of Kagoshima City. As background levels, 8.1 +/- 5.3 ng m(-3), 14.8 +/- 7.9 ng m(-3), 13.9 +/- 11.7 ng m(-3) and 4.4 +/- 1.6 ng m(-3) (mean +/- S.D.) were obtained for spring, summer, autumn and winter, respectively.  相似文献   

2.
Mercury in canopy leaves of French Guiana in remote areas   总被引:1,自引:0,他引:1  
A study of total Hg concentration in the foliage of the canopy was carried out in two remote areas in French Guiana. The sampled canopy is representative of the French Guiana canopy. The concentration in the foliage, 64+/-14 ngg(-1) (dry wt.), is used to estimate the annual input of total Hg to the soil through the litterfall, found to be 45+/-10 microgm(-2)y(-1). As translocation is negligible, mercury in the canopy originates mainly from atmospheric uptake by the leaves and this litterfall deposit represents a direct atmospheric input from the background atmospheric load into the soil.  相似文献   

3.
Spatial variations of mercury in sediment of Minamata Bay, Japan   总被引:4,自引:0,他引:4  
Mercury-contaminated effluent was discharged into Minamata Bay from a chemical plant over a period of approximately 40 years until 1968. In October 1977, the Minamata Bay Pollution Prevention Project was initiated to dispose of sedimentary sludge containing mercury concentrations higher than 25 mg kg(-1). In March 1990, the project was completed. In an effort to estimate current contamination in the bay, the vertical and horizontal distributions of mercury in sediment were investigated. Sediment core samples were collected on June 26, 2002 at 16 locations in Minamata Bay and Fukuro Bay located in the southern part of Minamata Bay. The sediment in Fukuro Bay had not been dredged. The total mercury concentration in surface sediment was 1.4-4.3 mg kg(-1) (2.9+/-0.9 mg kg(-1), n=9) for the dredged area of Minamata Bay and 0.3-4.8 mg kg(-1) (3.6+/-1.6 mg kg(-1), n=4) for Fukuro Bay. In the lower layers of long cores taken from both areas, the total mercury concentration decreased with depth and finally showed relatively uniform low values. These values can be considered to represent the background concentration absent of anthropogenic influence, which was estimated for the study area to be 0.068+/-0.012 mg kg(-1) (n=10). From the surface, the total mercury concentration in Fukuro Bay increased with depth and reached a maximum at 8-14 cm. In Minamata Bay, several centimeters from the surface the total mercury concentration did not change significantly having considerably higher values than the background level. At six stations, the methylmercury concentration was determined. Although the vertical variations were similar to those for total mercury, Fukuro Bay sediment showed a higher concentration of methylmercury than Minamata Bay sediment.  相似文献   

4.
Air-soil exchange of mercury from background soils in the United States   总被引:2,自引:0,他引:2  
The air-surface exchange of mercury (Hg) was measured, using a dynamic polycarbonate flux chamber, for soils with low or "background" Hg concentrations (<0.1 mg/kg) at eleven locations across the contiguous United States. Sampling locations included agricultural, desert, grassland, mixed and pine forest ecosystems (n=1326 soil flux measurements at 46 individual sites). An overall soil Hg flux of 0.9+/-0.2 ng/m2/h for these background soils was obtained by averaging the means for the different locations. Soil Hg fluxes were significantly lower in dark conditions than in the light for all but the grassland sites. Mean inlet air Hg concentrations were 1.0+/-0.1 ng/m3 in the dark and 1.3+/-0.2 ng/m3 in the light. Soil temperature inside and outside of the chamber, air temperature, relative humidity, and irradiance were measured concurrently with soil Hg flux. Soil-air Hg exchange was weakly predicted by environmental variables (R2 from 0.07 to 0.52). For a single location, flux was better correlated with soil moisture than other measured environmental parameters, suggesting that soil moisture might be an important driver for Hg emissions from background soils. In addition, based on data collected we suggest some quality control measures for use of Tekran 2537A analyzers when measuring low mercury fluxes. Using basic scaling procedures, we roughly estimate that natural emissions from soils in the contiguous U.S. release approximately 100 Mg/yr of Hg to the atmosphere.  相似文献   

5.
Mercury-contaminated effluent was discharged into Minamata Bay from a chemical plant over a 20-year period until 1965 (from 1958 to 1959, effluent was discharged into Minamata River), causing Minamata disease. In an effort to characterize the extent of the contamination in the Yatsushiro Sea, the vertical and horizontal distributions of mercury in sediment were investigated. Sediment was sampled at 62 locations in the southern part of the sea from 4 to 6 March 1996. In the lower layers of the long cores of sediment, the total amount of mercury was at a relatively uniform low concentration. We interpret these low values to represent the background concentration absent of anthropogenic influence. The background value thus estimated for the Yatsushiro Sea was 0.059 +/- 0.013 mg kg(-1) (mean +/- S.D., n = 51). The highest concentration in each sample ranged from 0.086 to 3.46 mg kg(-1) (mean, 0.57 mg kg(-1)). The higher values were obtained at stations near Minamata Bay and the Minamata River (the sources of the pollution). Concentrations decreased with distance from the source. An inspection of the vertical profiles of mercury concentration in cores suggested that the deposited mercury had not been fixed in sediment but had been transported, despite 30 years having past since the last discharge of contaminated effluent. At nine stations, extractable inorganic and organic mercury concentrations were determined differentially. Inorganic mercury is the predominant species in sediment and organic mercury comprising approximately 1% of the total.  相似文献   

6.
Artisanal zinc smelting using indigenous method in Hezhang County, Guizhou, China has posed seriously environmental pollution to the local environment. Within less than 150 km2 area in Hezhang, a few metric tons of mercury were released into the atmosphere each year since 1989 due to artisanal zinc smelting, and the surface waters were seriously contaminated with mercury. For the first time, we investigated the mercury contamination to the local soil and crop compartments due to mercury emissions from artisanal zinc smelting activities in this area. Mercury distribution patterns in 5 soil profiles collected in artisanal zinc smelting area showed that the top soils were seriously contaminated with mercury. The soils from agriculture land close to the zinc smelting areas were also contaminated with mercury due to the deposition of mercury species that emitted from artisanal zinc smelting processes. Total mercury concentrations in top soils decrease exponentially with distance from the zinc smelting area. Corn plants that were cultivated in agriculture land close to the zinc smelting area were also contaminated with mercury. Mercury concentration in corn plant tissue increased in the order of grains相似文献   

7.
During May-September 1999 human hair samples were collected from the village of Caimito, a fishing community of the state of Sucre (Colombia), in the San Jorge River basin area, and analyzed for total mercury (t-Hg) by cold vapor atomic absorption spectroscopy. T-Hg was measured in both male and female people aged 15-65 years, whose diet mainly consists of fish collected in nearby marshes. Average hair t-Hg concentration in people from Caimito was 4.91 +/- 0.55 microg/g (n = 94), similar to the value previously detected in fishermen living in the gold mining area, 50 km east. Males had similar t-Hg concentrations (4.31 +/- 0.42 microg/g; n = 56) to females (5.78 +/- 1.21 microg/g; n = 38) and there was no difference in t-Hg levels between groups of different age. Mercury content in hair was weakly but significantly associated (R = 0.20, P = 0.05) with fish consumption.  相似文献   

8.
The outermost bark layer of trees, predominantly Scots pine (Pinus sylvestris), was sampled at 82 non-urban locations from six arbitrarily designated areas (Northwest, Northeast, Central Highlands, Central and East, Central and Southwest, Southeast), throughout Scotland during 2002-2003 and analysed for lead concentration and stable lead isotopes by flame atomic absorption spectrometry (AAS) and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. The mean lead concentration and mean (206)Pb/(207)Pb ratio (+/-1 standard deviation, SD) for bark samples from the areas were as follows: Northwest (8.0 mg kg(-1), 1.121+/-0.014, n=17), Northeast (8.9 mg kg(-1), 1.117+/-0.012, n=12), Central Highlands (11.3 mg kg(-1), 1.130+/-0.010, n=11), Central and East (35.3 mg kg(-1), 1.120+/-0.007, n=10), Central and Southwest (20.6 mg kg(-1), 1.125+/-0.018, n=22) and Southeast (34.4 mg kg(-1), 1.120+/-0.005, n=10), with an overall mean lead concentration of 18.5 mg kg(-1) (range 0.6-146 mg kg(-1), median 8.4 mg kg(-1)) and an overall mean (206)Pb/(207)Pb ratio of 1.122+/-0.014 (range 1.089-1.168, median 1.122). The overall mean (206)Pb/(207)Pb ratio for bark was therefore significantly lower (p<0.01, t test) than the mean atmospheric (206)Pb/(207)Pb ratio of 1.154+/-0.006 (range 1.144-1.167, n=50) and 1.154+/-0.010 (range 1.134-1.171, n=26) as determined in rainwater collected routinely at Glensaugh, Central Highlands, during 2002 and 2003, respectively. The bark (206)Pb/(207)Pb values, 90% of which lay between 1.10 and 1.14, were more akin to those recorded for the atmosphere (via rainwater, atmospheric particulates, moss, etc.) at various locations throughout Scotland during the 1990s, a decade over which the use of leaded petrol (mean (206)Pb/(207)Pb ratio=1.076+/-0.011) declined markedly before its complete withdrawal in 2000. This strongly suggests that the lead content and isotopic composition of tree bark from Scots pine, which reputedly sheds its outer layers every couple of years or so, reflect exposure to atmospherically deposited lead (in the atmosphere or soil) over a much longer time period than just the previous 2-3 years of exposure to contemporary atmospheric lead. The possible influence of soil lead upon tree bark through external attachment was not observed in a comparative sub-set study of 27 paired bark (mean (206)Pb/(207)Pb ratio=1.122+/-0.016) and surface (0-2 cm) soil (mean (206)Pb/(207)Pb ratio=1.145+/-0.022) samples, in only six cases (i.e. 22%) of which did the corresponding (206)Pb/(207)Pb ratios agree within +/-2 SD. Likewise, bark (206)Pb/(207)Pb values exhibited no discernible trend with distance from the nearest road, with similar average values for 0-20 m (1.123+/-0.015, n=34) and 20-700 m (1.122+/-0.012, n=48), although the corresponding mean (and median) lead concentration of 23.5 (10) mg kg(-1) vs. 14.9 (7.5) mg kg(-1) was slightly higher for the former. The influence of airborne dusts from waste deposits related to former mining/smelting of Wanlockhead/Leadhills lead ores ((206)Pb/(207)Pb=1.170+/-0.003) could be seen, however, in the sycamore bark lead concentrations of up to 3050 mg kg(-1) and (206)Pb/(207)Pb ratios (1.168-1.171) observed at a distance of 0.5 km away.  相似文献   

9.
We present data from an early reconnaissance survey (stream sediments, soil, and water Hg chemistry; plants and water crustaceans Hg intake) of the Almadén district (central Spain), that was carried out to establish the potential environmental hazards derived from the anomalous mercury concentrations measured in this realm. The Almadén mercury district (approximately 300 km2) can be regarded as the largest geochemical anomaly of mercury on Earth. The district includes a series of mercury mineral deposits, having in common a simple mineralogy (dominant cinnabar: HgS, and minor pyrite: FeS2). The ore deposits have been mined for more than 2000 years, and the main mine of the district (Almadén), has been active from Roman times to present day with almost no interruptions. The mercury distribution in soils of the district reveals the existence of high, and extremely high mercury values (up to 8889 microg g(-1)), whereas concentrations in stream sediments and waters reach exceptional values of up to 16,000 microg g(-1) and 11,200 ng l(-1) respectively. On the other hand, very high concentrations of methylmercury (MeHg) have been detected in calcines (up to 3100 ng g(-1)), sediments (0.32-82 ng g(-1)), and waters (0.040-30 ng l(-1)). Mercury gets incorporated to edible river crustaceans and plants. The red swamp crayfish Procambarus clarkii, has Hg concentrations of up to 9060 ng g(-1) (muscle) and 26,150 ng g(-1) (hepatopancreas). Regarding plants, the local wild asparagus (Asparagus acutifolius) yields values of up to 298 microg g(-1) Hg. Mercury also escapes to the atmosphere, and mineral deposits, together with metallurgical activities, generate strong anomalies of atmospheric Hg. The most important concentrations relate to the emissions from the Almadén metallurgical roaster, in the order of 14,000 ng Hg m(-3). Additionally, large open pit operations also contribute to the district atmospheric pool of mercury, with high concentrations above 1000 ng Hg m(-3). Thus, no system (rocks, soils, sediments, waters, atmosphere, biota) in the Almadén district is free from strong Hg contamination.  相似文献   

10.
Previous research has indicated that foliar mercury (Hg) flux is bi-directional, with influence from both atmospheric and soil Hg. This work investigated the role of soil and air Hg concentrations on foliar Hg exchange using a single-plant gas-exchange system. The exchange of Hg vapor with aspen seedlings grown in soil Hg concentrations of 0.03+/-0.01, 5.8+/-0.5, and 12.3+/-1.3 microg g(-1) and exposed to atmospheric Hg concentrations of 2.4+/-0.5, 11.0+/-0.9, and 30.4+/-2.2 ng m(-3) was measured. At background atmospheric Hg concentrations of 2.4 ng m(-3), foliage released Hg at all three soil Hg concentrations and fluxes ranged from 1.6 to 5.5 ng/m(2)/h. At higher atmospheric Hg concentrations (>11 ng m(-3)), net deposition to foliage ranged from -9 to -47 ng/m(2)/h, exhibiting increase uptake with higher air Hg concentrations. Fluxes associated with aspen showed an immediate response to changes in atmospheric Hg concentrations. Compensation points, the air concentration where no net flux of Hg vapor occurred, were 3-4 ng m(-3) in the light and 2-3 ng m(-3) in the dark for trees grown in soils of 0.03 and 6 microg g(-1) Hg content, and 5-6 ng m(-3) in the light and 2.5-3.5 ng m(-3) in the dark for trees grown in 12 microg g(-1) Hg soils.  相似文献   

11.
Sediments from nine floodplain lakes in Pantanal were analyzed for a large-scale (300 km) survey of mercury (Hg) load in sediments and soils of the Alto Pantanal and to study the relationship between Hg and reactive aluminum, iron, and manganese oxy-hydroxides. The results were compared with the Hg content in river and stream sediments from the Poconé gold mining area, where Hg has been extensively used and still is in use. The results indicate that the Hg concentrations were elevated in river sediment close to the mining area in Bento Gomes river basin (average in the < 74-microm fraction 88.9 ng Hg g(-1) dry wt.; interquartile range 50.3-119.5), but there was no clear indication that the local Hg emissions have contaminated the remote floodplain lakes, where concentrations were surprisingly low (average in the < 74-microm fraction 33.2 ng Hg g(-1) dry wt. sediment; interquartile range 18.4-46.8), in particular when considering geochemical characteristics of the sediment. The sediment from the floodplain lakes contained less Hg-tot and more reactive iron oxy-hydroxides than soils from the Tapajós area in the Amazon basin. This resulted in a mass ratio between Hg and amorphous oxy-hydroxides of only 5 x 10(-6) for Hg-tot/Fe-oxa (interquartile range 3-7 x 10(-6).  相似文献   

12.
Accumulation and transformation of atmospheric mercury in soil   总被引:7,自引:0,他引:7  
Field investigation and simulating experiments were carried out for understanding the accumulation and transformation of mercury in soil in relation to the deposition of atmospheric mercury. A positive correlation between the atmospheric mercury concentration and the content of mercury in soil was observed in the field investigation, with the correlation coefficient being 0.741** (n=52). The mercury content in soil decreased with the increasing distance from the mercury emission source. Simulated experiment demonstrated that the higher the mercury content in air was, the higher was the amount of mercury accumulated in soil, which was in accordance with the results found from the field investigation. Transformation process occurred once mercury deposited into the soil. Analyses of soil samples exposed to air with mercury contents of 796.4+/-186.3 ng/m(3) for 2 months indicated that 24.58-26.86% of total mercury deposited into the soil existed in Hg(0) form, 0.10-0.12% in active form, 14.56-18.75% in HCl-dissoluble form, 0.86-5.84% in organic-bound form and 52.64-55.29% in residual form.  相似文献   

13.
The objective of this study was to evaluate the effect of industrial pollution on the distribution of radiocaesium in soil and on its transfer from soil to plants. The study was started in September 2000 in four Scots pine stands located at distances of 0.5, 2, 4 and 8 km along a transect running SE from the Cu-Ni smelter at Harjavalta in SW Finland. Annual emissions from the smelter in 1990 were 80 t of Cu, 31 t of Ni and 9000 t of SO(2), and in 1999 these were 5.9, 0.8 and 3400 t, respectively. At each site, soil profiles were sampled with a corer, and samples were separated into litter (L), organic soil layer (O) and mineral soil layers (B, E). Mushrooms, lichens (Cladina spp. and Cetraria islandica), lingonberry (Vaccinium vitis-idaea) and crowberry (Empetrum nigrum) plants were collected at each site, except at a distance of 0.5 km, where only mushrooms were available. In the organic soil layer, 137Cs activity decreased from 8000 Bq/m(2) at a distance of 8 km from the smelter to 1500 Bq/m(2) at a distance of 0.5 km; in litter, 137Cs concentration increased from 6300 Bq/m(2) at 8 km to 14000 Bq/m(2) at 0.5 km. 137Cs activity concentration decreased significantly in plants, mushrooms and lichens as the pollution load increased. In lichens, 137Cs activity decreased from 910 Bq/kg at 8 km to 170 Bq/kg at 2 km, while in lingonberry it decreased from 1470 to 20 Bq/kg and in crowberry from 310 to 20 Bq/kg. Aggregated transfer factors for 137Cs decreased in a similar way in lingonberry from 7.6x10(-2) m(2)/kg at 8 km to 7.7x10(-4) m(2)/kg at 2 km and in crowberry from 1.6x10(-2) to 7.9x10(-4) m(2)/kg.  相似文献   

14.
A large amount of mercury has been discharged on the U.S. Department of Energy's Oak Ridge Site (Tennessee) as a part of the U.S. nuclear weapon program during the 1950s through the early 1960s. Increases in mercury concentration in fish and in lower East Fork Poplar Creek of Oak Ridge have been recently reported. This is an experimental study mimicking the initial stage of transformation and redistribution of mercury in soils, which are comparable to those of the Oak Ridge site. The objectives of this study were to investigate potential transformation, distribution, and plant uptake of mercury compounds in soils. Results show that the H(2)O(2)-oxidizable mercury fraction (organically bound mercury) was the major solid-phase fraction in soils freshly contaminated with soluble mercury compounds, while cinnabar fraction was the major solid phase fraction in soils contaminated with HgS. Langmuir relationships were found between mercury concentrations in plant shoots and in soil solid-phase components. Mercury in HgS-contaminated soils was to some extent phytoavailable to plants. Mercury transformation occurred from more labile fractions into more stable fractions, resulting in strong binding of mercury and decreasing its phytoavailability in soils. In addition, high mercury losses from soils contaminated with soluble mercury compounds were observed during a growing season through volatilization, accounting for 20-62% of the total initial mercury in soils.  相似文献   

15.
Total Hg concentrations and Hg speciation were determined in soils and attic dust in a 160 km2 area around Idrija mercury mine. Attic dust as well as a sample of soil was collected at 100 locations. Mercury phases were separated into cinnabar and non-cinnabar compounds via a thermo-desorption technique. The amount of the non-cinnabar fraction is important since it is potentially bioavailable and results are needed for further risk assessment studies. The concentrations of Hg in attic dust are many times higher than in surrounding soils and the attic dust/soil ratio changes with distance. The highest concentration ratios were identified at the greatest distance from the source of pollution and the lowest close to the source of pollution. This confirms the impact of air emissions on the wider area around Idrija. Furthermore the spatial mercury distribution in the attic dust shows that the influence of atmospheric emissions caused by the Idrija smelter resulted in impacts on the environment on a regional scale. The portions of non-cinnabar compounds increase with distance from the mercury source in both sampling media. Non-cinnabar fractions were found to be enriched in distant areas where fine grained material was deposited. There were two different transport mechanisms of dust particles and gaseous Hg(0) during the mercury production period. Obviously coarse grained particles, with mostly cinnabar-bound Hg settled in the immediate vicinity of the smokestack of the smelter, whereas the fine grained fraction could be dispersed further ahead. This is represented by the percentage of cinnabar-bound Hg in attic dust and soil decreasing with distance from the smelter. Gaseous Hg(0) is probably bound to fine and ultrafine aerosols with longer residence time against deposition. The consequence is that fine grained material with Hg2+ and Hg0 prevails in remote localities and is bound in soils and dust with matrix and organic matter as non-cinnabar mercury compounds. The distributions of mercury species in attic dust and soils along the Idrijca River show that in the region from Idrija to Spodnja Idrija the portions of cinnabar and non-cinnabar are about equal, while in the upper and in the lower Idrijca valley non-cinnabar bound mercury prevails. The applicability of attic dust for tracing the mercury halo in the Idrija area was successfully shown.  相似文献   

16.
For remediation of soils contaminated with heavy metals, the electrodialytic remediation (EDR) method is a highly relevant method, see e.g. Hansen et al. (Hansen HK, Ottosen LM, Kliem BK, Villumsen A. Electrodialytic remediation of soils polluted with Cu, Cr, Hg, Pb, and Zn. J Chem Tech Biotechnol 1997;70:67-73). During the process the heavy metals are transferred to the pore water in dissolved form or attached to colloids and move within the applied electric field. The method is found to be useful in many soil types, but has its strength in fine-grained soils. It is exactly in such soils that other remediation methods fail. Four cell experiments were made in order to investigate how relevant the method is for a more sandy soil and if it is suitable for non-ionic heavy metals such as elemental mercury. The duration was 27 days for two of the experiments and two experiments lasted 54 days, and the mercury within the soil was initially 1200-1900 mg kg(-1), of which 84% was elemental Hg. To monitor the process the pseudo-total mercury concentration was distinguished between elemental mercury and non-metallic mercury species by thermodesorption. During the electrodialytic treatment an increase of the content of non-metallic mercury occurred and a corresponding decrease of the content of elemental mercury which indicates a transformation of the latter species into any other non-metallic species. Generally, oxidation of Hg by dissolved oxygen in a solution is kinetically inhibited and thus quite slow. The redistribution of Hg was closely connected to a decrease of soil pH during the experiments. This corresponds very well to the thermodynamic calculations from which it was found that a decrease in the pH of the soil will result in an increase in the oxidation rate of elemental Hg. Results from this investigation show that the electrodialytic remediation method alone is not efficient in situations with sandy soils containing elemental mercury. As a solution for this problem it is suggested to add chloride to the soil system. Chloride would act as a complexing agent avoiding precipitation and enhancing the dissolution of precipitates as well as elemental mercury.  相似文献   

17.
Previous studies at the Svartberget catchment in northern Sweden have identified potential terrestrial sources of methylmercury (MeHg) and total mercury (THg) in runoff as well as processes controlling MeHg/Hg transfers from soil to runoff water. This paper considers whether the concepts based on a few seasons of observations are consistent with catchment budgets of MeHg/THg over half a decade. Inter-annual and seasonal variations in the input and output fluxes of THg/MeHg, in open field wet deposition (OF), litterfall (LF) and runoff water are evaluated together with more recently measured concentrations that include the throughfall water (TF) data. The input and output flux data of THg and MeHg from the Svartberget catchment are also compared to those from the G?rdsj?n Catchment. The average annual MeHg input fluxes in OF, TF and LF are 0.08, 0.17 and 0.3 g km(-2) year(-1), respectively. The comparable inputs for THg are 7, 15 and 17 g km(-2) year(-1). Thus, LF is as important as TF for THg inputs, while LF is twice as important as TF for MeHg inputs. The annual output flux of MeHg varied between 0.05 and 0.14 g km(-2) year(-1). The annual output flux of THg varied between 1 and 3.4 g km(-2) year(-1). The large inter-annual variations in catchment output did not follow the smaller variations in atmospheric input. This suggests that changes in climate can effect terrestrial outputs of THg/MeHg to surface water more than atmospheric deposition. These data do not contradict the earlier findings that it is the hydrological and biogeochemical processes in the riparian zone that have a central role in determining the amount of MeHg reaching surface waters from forested catchments. The juxtaposition of major flow paths and organic-rich soils in the riparian zone may create the locations of most importance for net MeHg production, runoff export and a larger pool of MeHg.  相似文献   

18.
Elevated mercury concentrations were measured at the University of Connecticut's mercury forest flux tower during spring agricultural field operations on an adjacent corn field. Concentrations at the tower were elevated, a peak of 7.03 ng m(-3) over the background concentration of 1.74+/-0.26 ng m(-3), during times when the prevailing wind was from the direction of the corn field and during periods when the soil was disturbed by tilling. Strong deposition to the forest was recorded at the point of measurement when atmospheric mercury concentrations were elevated. The strongest deposition rate was a 1 hour maximum of -4011 ng m(-2) h(-1) following the initial peak in atmospheric concentrations, Analyses of the meteorological conditions and mercury content in agricultural soil, manure and the diesel consumed in the tilling operation indicate that the source of the mercury was from the agricultural tilling operations and it was advected over the tower enriching the atmospheric concentrations above the forest canopy leading to deposition. These results indicate that agriculture operations resulting in a disturbed soil surface may be a source of atmospheric mercury originating from the pool of mercury bound in the soil. This represents a previously undocumented source of mercury emissions resulting from anthropogenic activities.  相似文献   

19.
Rice paddy fields in the Naboc area, near Monkayo on the island of Mindanao, Philippines, have been irrigated four times a year over the last decade using Naboc River water contaminated with mercury (Hg) by artisanal gold mining in the Diwalwal area. Silt containing up to at least 90 mg Hg/kg (d.w.) has been deposited in rice paddy fields during the 1990s and this has been repeatedly mixed into the rice root zone through ploughing. Hg in the rice paddy field soils averages 24 mg Hg/kg and generally exceeds the UK and Canadian soil quality thresholds for agricultural soils as well as the proposed Dutch Intervention value and the USEPA soil ingestion Soil Screening Level (SSL) for inorganic Hg. Much lower Hg concentrations (0.05-0.99 mg/kg) within the range expected for uncontaminated soils, characterise soils on which corn and bananas are cultivated, largely because these are not irrigated with Hg-contaminated water from the Naboc River. The estimated total weekly MeHg intake for a person living in the Naboc area related to the weekly consumption of 2.1 kg of rice grown on Hg-contaminated soils (15 microg MeHg) in conjunction with 1 kg of fish (220 microg MeHg) and 100 g of mussels (50 microg MeHg) from the Naboc River, would total 285 microg MeHg (equivalent to 4.75 microg/kg bw for a 60 kg adult), which is nearly three times the JECFA PTWI of 1.6 microg/kg bw. This will significantly contribute to the population mercury exposure and might explain why 38% of the local inhabitants were classified as Hg intoxicated during a mercury toxicity assessment [Drasch GS, B?se, O'Reilly S, Beinhoff C, Roider G, Maydl S. The Mt. Diwata study on the Philippines 1999-assessing mercury intoxication of the population by small scale gold mining. Sci Total Environ 2001; 267(1-3): 151-168.].  相似文献   

20.
Concentrations of total mercury and methylmercury (MeHg) were measured in soil and vegetation samples collected from a small area with a long history of Hg-mining. Hg distributions were determined in stream-waters during two sampling periods. Total Hg concentrations in soil and vegetation samples were highly elevated ranging from 0.41 to 610 mg kg(-1) and from 0.02 to 55 mg kg(-1), respectively. MeHg concentrations varied from 0.41 to 8.8 microg kg(-1) in soil samples and from 0.65 to 5.5 microg kg(-1) in vegetations. The concentrations of total Hg in stream waters varied from 55.0 to 7020 ng L(-1) in the flood-flow regime and from 24.8 to 679 ng L(-1) in the base-flow regime, respectively. Average dissolved Hg concentration was 15.7 ng L(-1) in the wet season and 21.0 ng L(-1) in the dry season. However, particulate Hg was typically >70% of total Hg in the flood-flow regime. Higher concentrations of particulate Hg primarily originated from summer floods were the major pathway of Hg transportation, which were evidenced by the positive correlation between particulate Hg and total suspended solids (TSS). The contaminated soils and distribution patterns of Hg in the stream-waters may serve as an important source of Hg to the local environment in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号