首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
以辛酸亚锡为催化剂,1,4-丁二醇为引发剂,将ε-己内酯与DL-丙交酯进行开环聚合制备两端带有羟基的ε-己内酯和DL-丙交酯共聚物(PCDLA-OH预聚物),然后以PCDLA-OH预聚物引发L-丙交酯开环聚合制备两端为聚L-丙交酯链段,中间为ε-己内酯和DL-丙交酯共聚物链段的三嵌段共聚物(PLLA-b-PCDLA-b-PLLA),并对嵌段共聚物的结构与性能进行了测试。结果表明,PCDLA-OH预聚物中DL-丙交酯的用量越大,预聚物逐渐从部分结晶转变为无定形聚合物,玻璃化转变温度逐渐升高。当DL-丙交酯与ε-己内酯的摩尔比为3/10,PCDLA-OH预聚物与L-丙交酯的质量比为1/5时,所制备的PLLA-b-PCDLA-b-PLLA的扯断伸长率为204%,拉伸强度为4.77 MPa。  相似文献   

2.
以辛酸亚锡[Sn(Oct)2]作为引发剂,采用ε-己内酯(ε-CL)开环均聚合制备聚ε-己内酯(PCL),考察了n(ε-CL)/n[Sn(Oct)2]、反应温度和反应时间等因素对聚合产物特性黏数的影响。以Sn(Oct)2为催化剂,聚乙二醇(PEG)为引发剂,合成了不同相对分子质量的PCL-PEG-PCL三嵌段共聚物,研究了ε-CL均聚物及共聚物的结构、热性能和结晶形态。PCL最佳合成工艺为:n(ε-CL)/n[Sn(Oct)2]为400,温度130℃,反应时间4 h。随着PEG相对分子质量从2×103增加到8×103,三嵌段共聚物的熔融温度、熔融焓和结晶温度逐渐升高;结晶温度及PEG相对分子质量对PCL-PEG-PCL三嵌段共聚物球晶的形态和尺寸影响很大。  相似文献   

3.
采用开环聚合的方法制备了Pluronic/寡聚ε-己内酯嵌段共聚物,该共聚物通过酰氯化反应得到了端基结构为丙烯双键的大分子单体;最后以氧化还原引发剂、采用自由基共聚合方法制备了聚(甲基丙烯酸-co-酰氯化大单体)共聚型水凝胶。性能分析表明所制备水凝胶具有良好的pH和温度双重敏感性。  相似文献   

4.
宗秋艳  董霞  何瑾馨 《精细化工》2013,30(5):494-499
采用聚乙二醇单甲醚(Mn=1 900,5 000)分别引发丙交酯和ε-己内酯开环聚合合成了中间嵌段(PLA)聚合度递增的聚乙二醇-聚丙交酯-聚己内酯(MPEG-PLA-PCL)两亲扩展型共聚物和相应的聚乙二醇-聚己内酯(MPEG-PCL)两嵌段共聚物。用FTIR、1HNMR和GPC对产物结构进行了表征,研究了共聚物和常规低分子表面活性剂的乳化性能,探讨了中间极性嵌段的长度对共聚物乳化性能的影响。结果表明,对于甲苯/水体系,共聚物可用于制备稳定的O/W型乳液,且三嵌段共聚物的乳化性能优于低分子表面活性剂;随着引入PLA嵌段聚合度的增加,共聚物的乳化能力呈先增加后减小的趋势;相对于MPEG1900系列共聚物,MPEG5000系列共聚物中需要引入更长的中间嵌段才能获得最佳乳化性能。  相似文献   

5.
硅烷芳炔-硅氧烷芳炔嵌段共聚物的合成与表征   总被引:1,自引:1,他引:0       下载免费PDF全文
汪强  杨建辉  袁荞龙  黄发荣  杜磊 《化工学报》2014,65(10):4168-4175
合成了不同链段长度的卤代硅氧烷,并用其与间二乙炔基苯格氏试剂反应,合成了两种硅烷芳炔-硅氧烷芳炔嵌段共聚物(SiO-b-PSA),并制成碳纤维增强树脂复合材料。利用红外光谱(FT-IR)、核磁共振氢谱(1H NMR)、凝胶渗透色谱(GPC)、旋转流变、差示扫描量热分析(DSC)、热失重分析(TGA)和悬梁臂冲击实验对共聚物及其复合材料的结构和性能进行表征。研究结果表明所合成的共聚物具有优良的耐热性和韧性,硅烷芳炔-硅氧烷芳炔嵌段共聚物在氮气气氛下的Td5高于513℃,1000℃残留率高于78.9%,硅烷芳炔-硅氧烷芳炔嵌段共聚物/碳纤维复合材料的冲击强度高达(30.92±0.44) kJ·m-2。  相似文献   

6.
崔玲娜  刘跃军 《化工学报》2018,69(9):4075-4082
以端羟基聚乳酸(PLA)、聚己二酸-丁二醇-尿素(PBAu)为预聚物,六亚甲基二异氰酸酯(HDI)为扩链剂,制备出一种新型PLA/PBAu嵌段共聚物。研究了扩链剂用量、扩链温度以及催化剂用量对PLA/PBAu嵌段共聚物分子量的影响,确定了合成PLA/PBAu嵌段共聚物的最佳工艺条件。采用核磁共振、凝胶渗透色谱、差示扫描量热仪、扫描电镜等对共聚物薄膜结构及性能进行表征。结果表明:成功合成了PLA/PBAu嵌段共聚物,分子量可达10×104,玻璃化转变温度约为41℃;并且随着PBAu含量的增加,共聚物的结晶度逐渐增加。以NaOH溶液为模拟液进行加速降解实验发现,当PBAu含量为30%时,可以显著提高嵌段共聚物的降解速率,并且通过调节PLA、PBAu预聚物的含量,可以控制嵌段共聚物的降解速率。  相似文献   

7.
以聚乙二醇(PEG-400)、环氧氯丙烷为原料,氢氧化钾为缚酸剂,十六烷基三甲基溴化铵为相转移催化剂制得聚乙二醇缩水甘油醚(epoxide-PEG-epoxide).然后,在氢氧化钠水溶液中,聚乙二醇缩水甘油醚中的环氧键水解生成分子链两端各含有两个羟基的大分子引发剂((HO)2PEG(OH)2).最终,以辛酸亚锡为催化剂,端羟基大分子引发剂引发ε-己内酯开环聚合,合成了不同相对分子质量的H型两亲性嵌段共聚物((PCL)2PEG(PCL)2).通过红外光谱(FTIR)和核磁共振氢谱(1H-NMR),聚乙二醇缩水甘油醚,端羟基大分子引发剂和H型两亲性嵌段共聚物的结构得到了确认.示差扫描量热法对两亲性嵌段共聚物热性能的研究表明:当亲水段的聚乙二醇分子量为400时,聚合物的熔融温度主要受疏水段的聚己内酯影响,随着聚己内酯链段长度的增加,熔融温度升高.  相似文献   

8.
采用熔融缩聚法合成了聚酰胺(PA)6/聚四氢呋喃(PTEMG)嵌段共聚物,研究了PA6、PTEMG链段的相对分子质量、含量对嵌段共聚物热性能的影响,通过傅立叶变换红外光谱、核磁共振、差示扫描量热、热重测试等对产物进行分析.结果表明,嵌段共聚物以羧基封端,当PA6、PTEMG链段相对分子质量分别为2 000、1 000时,共聚物的分子序列长度最长,相对分子质量最大;PTEMG链段相对分子质量越小,共聚物的熔点越低;PTEMG链段相对分子质量相同时,随PA6链段相对分子质量的增加,熔点升高;嵌段共聚物中PA6组分的熔融温度范围随着PTEMG含量的增加而逐步变宽;共聚物具有较高的热分解活化能.  相似文献   

9.
以己内酰胺、己二酸、聚丙二醇(PPG)等为原料,采用高压反应釜进行熔融缩聚,合成了一系列热塑性弹性体尼龙6-b-PPG(PA6-b-PPG)嵌段共聚物。通过傅立叶变换红外分析、核磁共振氢谱对其化学结构进行表征,通过差示扫描量热、热失重分析其热性能,通过差示扫描量热分析、广角X射线衍射及偏光显微镜分析其结晶性能,并测试了材料的力学性能。结果表明,聚合产物为PA6硬段与PPG软段的嵌段共聚物;制备的系列PA6-b-PPG嵌段共聚物熔点在209~225℃之间,起始热分解温度在380~397℃之间。随着PPG含量的增加,PA6-b-PPG嵌段共聚物从γ型结晶向α型结晶转变,密度、硬度、拉伸强度、弯曲强度逐渐降低,而断裂伸长率逐渐增加。可以通过调整软硬段的比例得到不同力学性能的PA6-b-PPG嵌段共聚物,以满足不同条件下的需求。  相似文献   

10.
PET-PEG嵌段共聚物的序列结构研究   总被引:4,自引:0,他引:4  
用直接酯化法合成了一系列不同 PGE含量的 PET- PEG(聚对苯二甲酸乙二醇酯-聚乙二醇 )嵌段共聚物。用 FTIR、H1- NMR等测试手段对嵌段共聚物的序列结构进行分析。证明 PET- PEG嵌段共聚物的组成与投料比非常接近 ;其分子链结构特征是以硬段 PET封端的多嵌段共聚物 ;PEG含量影响大分子链的序列结构 ,随 PEG含量的增加 ,硬段长度减小 ,软段长度增加。  相似文献   

11.
采用光散射-粘度-示差多检测凝胶渗透色谱(GPC)测定了自行合成的丁二烯-苯乙烯两嵌段共聚物以及苯乙烯-丁二烯-苯乙烯三嵌段共聚物(SBS)的Mark-Houwink常数。m(S)/m(B)=3/7的两嵌段共聚物的K=0.01673,α=0.743。m(S)/m(B)=3/7的三嵌段共聚物的K=0.03912,α=0.690。考察了不同结合苯乙烯含量和不同分子量的丁二烯-苯乙烯两嵌段共聚物在四氢呋喃(THF)中的特性粘数、均方旋转半径和流体力学半径。实验表明,随着分子量的增大和苯乙烯含量的减少,丁苯两嵌段共聚物在THF溶液中的“线团”舒展程度增加。  相似文献   

12.
崔运启  张二琴  张普玉 《广东化工》2011,38(2):20-21,47
采用阴离子开环聚合法合成了嵌段共聚物PCL—PEG—PCL(聚己内醋-聚乙二醇-聚己内酯)。用1HNMR和GPC等对产物的分子量和组成进行表征,将其在离子液体中配成胶束,通过透射电镜(TEM)观察胶束的微观结构。研究结果表明,当疏水链段长度固定时,胶束的自组装形状主要依赖于亲水链的长度。  相似文献   

13.
基于偏氯乙烯嵌段共聚物的多级多孔炭的制备   总被引:2,自引:1,他引:1       下载免费PDF全文
杨杰  浦群  包永忠 《化工学报》2014,65(1):358-364
采用可逆加成-断裂链转移(RAFT)活性自由基聚合制备了聚苯乙烯-b-聚偏氯乙烯-b-聚苯乙烯嵌段共聚物(PS-b-PVDC-b-PS),以此嵌段共聚物为碳前驱体,直接碳化制备微孔-中孔复合多级多孔炭。采用凝胶渗透色谱仪和核磁共振仪表征了嵌段共聚物结构,表明通过RAFT聚合可制得分子量较高(MnGPC >6000 g·mol-1)和分子量分布较窄(PDI<1.5)的PS-b-PVDC-b-PS。采用热重分析表征嵌段共聚物热解特性,采用扫描电镜、N2吸脱附表征多孔炭形貌和孔隙结构。结果表明嵌段共聚物同时具有PVDC和PS链段的热失重峰,PS链段可完全热解而具有形成中孔的模板作用,PVDC链段热降解形成含微孔的炭骨架,最终形成兼有微孔和中孔的多级多孔炭;随着PS嵌段含量的增加,嵌段共聚物的成炭率逐渐降低,孔隙尺寸逐渐增大;当PS/PVDC聚合度比为4.3时,多孔炭的比表面积、中孔率和平均孔径达到最大,分别为839 m2·g-1、54%和2.02 nm。  相似文献   

14.
用溶液接枝方法将马来酸酐接枝于丙烯-丁二烯共聚物(PPB),制得聚丙烯改性产物。采用傅里叶变换红外光谱、核磁共振波谱、差示扫描量热法、凝胶渗透色谱等表征接枝产物的结构及性能。研究发现,接枝反应主要发生在PPB的丁二烯链段,少量发生在聚丙烯链段;马来酸酐的接枝率随着PPB中丁二烯含量的增加而增加,在接枝率为0-11.7%时,接枝产物的结晶温度从93.0℃升高到97.4℃,而结晶焓从61.8 J/g降低到44.9 J/g。  相似文献   

15.
采用具有聚苯乙烯高分子链为配位基团的聚合催化剂,催化2,5-二溴-3-己基噻吩单体进行Kumada缩聚反应,利用一锅法制备了聚(3-己基噻吩)-聚苯乙烯嵌段共聚物。结果表明:采用一锅法,在室温、常压条件下进行一步聚合直接生成嵌段共聚物,反应过程简单,聚(3-己基噻吩)与聚苯乙烯嵌段对接率接近100%;与聚(3-己基噻吩)相比,聚(3-己基噻吩)-聚苯乙烯嵌段共聚物的结晶性能更好。  相似文献   

16.
本论文采用四异丙氧基钛为主催化剂,加入适当的助催化剂,通过熔融缩聚的方法制得了含有不同比例以及不同分子长度的PBS-b-PEG嵌段共聚物。实验表明:随着合成时大分子PEG摩尔比例的增加,聚合物的粘均分子量呈上升趋势;随着PEG含量的增加,聚合物的拉伸强度有所降低,但断裂伸长率显著提高。  相似文献   

17.
采用熔融共混制备聚氧乙烯–聚氧丙烯醚嵌段共聚物增塑聚乳酸,研究聚氧乙烯–聚氧丙烯醚嵌段共聚物用量对聚乳酸/聚氧乙烯–聚氧丙烯醚嵌段共聚物共混体系流变性能、力学性能、热性能和微观结构的影响。当添加聚氧乙烯–聚氧丙烯醚嵌段共聚物的质量分数为20%时,聚乳酸/聚氧乙烯–聚氧丙烯醚嵌段共聚物共混体系的熔体流动速率为15.6g/(10min),比未增塑时提高约9倍,断裂伸长率为341.86%,撕裂强度为23.7N/cm,拉伸强度为44.5MPa,玻璃化转变温度从纯聚乳酸的60.1℃降到26.9℃。随着聚氧乙烯–聚氧丙烯醚嵌段共聚物用量的增加,共混体系的拉伸强度先下降后升高,断裂伸长率呈上升趋势,撕裂强度先下降后上升最后渐趋于稳定,聚乳酸链段的活动能力增强,增塑效果明显。扫描电子显微镜分析表明,当聚氧乙烯–聚氧丙烯醚嵌段共聚物质量分数≥12%时,共混体系脆冷断面的褶皱、粗糙度和裂纹明显增加,吸收能量能力增强,表现为断裂伸长率和撕裂强度提高。  相似文献   

18.
以阔叶浆纤维素为原料,钛酸四正丁酯为催化剂,离子液体1-丁基-3-甲基咪唑氯盐(BmimCl)为溶剂,均相条件下与ε-己内酯单体进行开环聚合制备纤维素-聚己内酯接枝共聚物,探讨了单体与催化剂用量、反应温度与时间等条件对纤维素接枝率的影响,并用热重分析、X-射线衍射、核磁共振氢谱等手段对接枝共聚物进行了表征。结果表明,当ε-己内酯与纤维素摩尔比为21 mol/mol,反应时间为24 h,反应温度为120℃,催化剂与纤维素质量比为12%时,纤维素的接枝率最高达到86.7%;纤维素接枝ε-己内酯后,纤维素结晶结构被破坏,热稳定性下降,核磁共振氢谱分析显示ε-己内酯在与纤维素接枝反应的同时发生了自聚反应,生成聚己内酯。  相似文献   

19.
通过悬浮聚合得到了甲基丙烯酸甲酯-N-环己基马来酰亚胺-丙烯腈三元共聚物,将其作为耐热改性剂与PVC共混。研究了单体配比对共聚物的玻璃化转变温度和溶度参数的影响及共聚物含量对共混物热性能和力学性能的影响。结果表明,共聚物的玻璃化转变温度随N-环己基马来酰亚胺(CHMI)用量的增加明显提高,随丙烯腈(AN)用量的增加而降低;溶度参数随CHMI用量的增加上升,随AN用量的增加而下降。将此共聚物与PVC共混,当其用量为PVC的40%(质量分数,下同)时,PVC的维卡软化点提高了20℃。  相似文献   

20.
李小鹏  胡勇  郑立辉 《广东化工》2013,(24):20-21,24
采用分散聚合法,二乙烯苯为交联剂,制备了石蜡/P(MMA-co-MAA)相变储能微胶囊.采用光学显微镜,扫描电子显微镜(SEM)、差示扫描量热仪(DSC)和热重分析仪(TGA)对其进行表征.实验结果表明:微胶囊呈球形,平均粒径为4.2um,几乎没有粘结,其相变温度为27.24℃,相变潜热为81.53J/g,芯材含量达到72.6%,同时具有良好的热稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号