首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pd/Nb2O5/Al2O3 catalysts were investigated on propane oxidation. Diffuse reflectance spectroscopy (DRS) and X-ray photoelectron spectroscopy (XPS) analysis suggested that monolayer coverage was attained between 10 and 20 wt.% of Nb2O5. Temperature programmed reduction (TPR) evidenced the partial reduction of niobium oxide. The maximum propane conversion observed on the Pd/10% Nb2O5/Al2O3 corresponded to the maximum Nb/Al surface ratio. The presence of NbOx polymeric structures near to the monolayer could favor the ideal Pd0/Pd2+ surface ratio to the propane oxidation which could explain the promoting effect of niobium oxide.  相似文献   

2.
Catalytic properties of supported gallium oxides have been examined for the selective reduction of NO by CH4 in excess oxygen. The activity was greatly affected by the support; Ga2O3/Al2O3 (Al2O3 supported Ga2O3) and Ga2O3–Al2O3 mixed oxide exhibited high activity and selectivity as comparable to Ga-ZSM-5, while unsupported Ga2O3 and the other supported Ga2O3 were ineffective. For Ga2O3/Al2O3, the activity changed with Ga2O3 content, and was highest at about 30 wt% Ga2O3, which corresponds to a theoretical monolayer coverage. Gallium oxide highly dispersed on Al2O3 is considered to be responsible for the high activity and selectivity. The reaction characteristics of Ga2O3/Al2O3 were studied and compared with Ga-ZSM-5 and Co-ZSM-5. Ga2O3/Al2O3 exhibited the highest activity and selectivity at high temperature. In addition, Ga2O3/Al2O3 showed higher tolerance against water than Ga-ZSM-5. C3H8 and C3H6 were also evaluated as reducing agents, and Ga2O3/Al2O3 showed higher activity than Ga-ZSM-5 above 723 K achieving almost complete reduction of NO to N2.  相似文献   

3.
Chunli Zhao  Israel E. Wachs   《Catalysis Today》2006,118(3-4):332-343
The vapor-phase selective oxidation of propylene (H2CCHCH3) to acrolein (H2CCHCHO) was investigated over supported V2O5/Nb2O5 catalysts. The catalysts were synthesized by incipient wetness impregnation of V-isopropoxide/isopropanol solutions and calcination at 450 °C. The catalytic active vanadia component was shown by in situ Raman spectroscopy to be 100% dispersed as surface VOx species on the Nb2O5 support in the sub-monolayer region (<8.4 V/nm2). Surface allyl species (H2CCHCH2*) were observed with in situ FT-IR to be the most abundant reaction intermediates. The acrolein formation kinetics and selectivity were strongly dependent on the surface VOx coverage. Two surface VOx sites were found to participate in the selective oxidation of propylene to acrolein. The reaction kinetics followed a Langmuir–Hinshelwood mechanism with first-order in propylene and half-order in O2 partial pressures. C3H6-TPSR spectroscopy studies also revealed that the lattice oxygen from the catalyst was not capable of selectively oxidizing propylene to acrolein and that the presence of gas phase molecular O2 was critical for maintaining the surface VOx species in the fully oxidized state. The catalytic active site for this selective oxidation reaction involves the bridging VONb support bond.  相似文献   

4.
The effect of citric acid (CA) addition was studied on the HDS of thiophene over Co–Mo/(B)/Al2O3 catalysts. The catalysts were characterized by means of LRS, Mo K-edge EXAFS, NO adsorption capacity measurements, and UV–vis spectra. The catalysts were subjected to a chemical vapor deposition (CVD) technique using Co(CO)3NO as a precursor of Co in order to get deeper insights into the effect of citric acid addition. It was shown that the HDS activity was enhanced by the citric acid addition up to the CA/Mo mole ratio of around 1 and leveled off with further addition. The amount of Co anchored by the CVD was increased by the addition of citric acid, suggesting an increase in the dispersion of MoS2 particles on the catalyst by the simultaneous presence of Co, Mo and citric acid, in conformity with the increase in the NO adsorption capacity. In contrast to Co–Mo catalysts, the edge dispersion of MoS2 particles in Mo/B/Al2O3 was not affected by the addition of citric acid. The LRS, UV–vis spectra and Mo K-edge EXAFS showed that Co–CA and Mo–CA surface complexes are formed by the addition of citric acid. The Co–CA surface complex is more preferentially formed on CoMo/Al than on CoMo/B/Al, in agreement with a greater promoting effect of citric acid at a lower CA/Mo mole ratio for CoMo/Al than for CoMo/B/Al.  相似文献   

5.
Regeneration of S-poisoned Pd/Al2O3 catalysts for the abatement of methane emissions from natural gas vehicles was addressed in this work.

Investigations were devoted to determine the temperature threshold allowing for catalyst reactivation under different CH4 containing atmospheres. Under lean combustion conditions in the presence of excess O2, partial regeneration took place only above 750 °C after decomposition of stable sulphate species adsorbed on the support. Short CH4-reducing, O2-free pulses led to partial catalyst reactivation already at 550 °C and to practically complete regeneration at 600 °C. Also in this case reactivation was associated with SO2 release due to the decomposition of stable support sulphates likely promoted by CH4 activation onto the reduced metallic Pd surface. Rich combustion pulses with CH4/O2 = 2 were equally effective to CH4-reducing pulses in catalyst regeneration.

These results suggest that a regeneration strategy based on periodical natural gas pulses fed to the catalyst by a by-pass line might be efficient in limiting the effects of S-poisoning of palladium catalysts for the abatement of CH4 emissions from natural gas engine.  相似文献   


6.
C. Martín  G. Solana  P. Malet  V. Rives   《Catalysis Today》2003,78(1-4):365-376
WO3/Nb2O5-supported samples prepared by impregnation are characterised by X-ray diffraction (XRD), Raman spectroscopy and X-ray absorption spectroscopy (XAS) at the W–L3 absorption edge, as well as temperature programmed reduction (TPR) and FT-IR monitoring of pyridine adsorption. Results are compared with those obtained for WO3/Al2O3 samples prepared in the same conditions, showing that niobia is able to disperse tungsta better than alumina does. Formation of a crystalline WO3 needs larger tungsten contents on niobia than on alumina, since tungsten solution into niobia is easier than into alumina. Raman and XAS spectra recorded under ambient conditions suggest that similar WOx species are formed on both supports at tungsten contents 0.5–1 theoretical monolayers; however, TPR results for the low tungsten loaded samples indicate that, when reduction starts (always at temperatures higher than 700 K under H2/Ar flow) there is a larger concentration of tetrahedral [WO4] species on alumina, than on niobia. Samples with low tungsten loading have been tested in isopropanol decomposition and ethylene oxidation, following both processes by FT-IR of adsorbed species up to 673 K. Results show that adsorption of ethylene on WO3/Nb2O5 yields acetaldehyde and acetate at 473 K, while this adsorption is non-reactive either on the supports or on WO3/Al2O3. Isopropanol adsorbs dissociatively on both supports, leading to acetone and propene formation on tungsta–niobia, but only propene on tungsta–alumina, probably due to the larger reducibility of the tungsten-containing phases.  相似文献   

7.
Fe2O3/Al2O3 catalysts for the N2O decomposition in the nitric acid industry   总被引:1,自引:0,他引:1  
Fe2O3 catalysts supported on Al2O3 were used to remove nitrous oxide from the nitric acid plant simulated process stream (containing O2, NO and H2O). Catalysts were prepared by the coprecipitation method and were characterized for their physico-chemical properties by BET, XRD, AFM and TPR analysis. A strong influence of the post-preparation heating conditions on the structural and catalytic properties of the catalysts has been evidenced. Laboratory tests revealed 95% conversion of N2O at temperature 750 °C and a slight decrease in activity in the presence of H2O and NO. The catalysts were inert towards decomposition of NO. The pilot-plant reactor and real plant studies (up to 3300 h time-on-stream) confirmed high activity and very good mechanical stability of the catalysts as well as no decomposition of nitric oxide.  相似文献   

8.
Low loaded alumina supported manganese oxides exhibit a high activity and selectivity for the selective catalytic reduction (SCR) of NO in the temperature range 383–623 K. The impact of low concentrations of SO2 on the activity of these catalysts has been investigated. Upon SO2 addition to the flue gas, the catalysts lose their high initial activity in a few hours due to stoichiometric SO2 uptake. Analysis of the deactivated samples by mercury porosimetry, FTIR, TPR and TPD shows that the deactivation is not due to the formation of (bulk or surface) Al2(SO4)3 or deposition of ammonium sulphates. Comparison of the results with unsupported Mn2O3 and MnO2 provides evidence that formation of surface MnSO4 is the main deactivation route. This process is independent of the oxidation state of the manganese and the presence of oxygen in the gas stream. The formed sulphates decompose at 1020 K and are reduced by H2 at temperatures above 810 K. This means that regeneration of the catalysts is not very feasible. The results restrict practical application of these catalysts to sulphur free conditions.  相似文献   

9.
An Al2O3-ZrO2 support was prepared by grafting a zirconium precursor onto the surface of commercial γ-Al2O3. A physical mixture of Al2O3-ZrO2 was also prepared for the purpose of comparison. Ni/Al2O3-ZrO2 catalysts were then prepared by an impregnation method, and were applied to the hydrogen production by steam reforming of liquefied natural gas (LNG). The effect ZrO2 and preparation method of Al2O3-ZrO2 on the performance of supported nickel catalysts in the steam reforming of LNG was investigated. The Al2O3-ZrO2 prepared by a grafting method was more efficient as a support for nickel catalyst than the physical mixture of Al2O3-ZrO2 in the hydrogen production by steam reforming of LNG. The well-developed tetragonal phase of ZrO2 and the high dispersion of ZrO2 on the surface of γ-Al2O3 were responsible for the enhanced catalytic performance of Ni/Al2O3-ZrO2 prepared by way of a grafting method.  相似文献   

10.
NO reduction to N2 by C3H6 was investigated and compared over Cu-Al2O3 catalysts prepared by four different methods, namely, the conventional impregnation, co-precipitation, evaporation of a mixed aqueous solution, and xerogel methods. It was found that the catalyst preparation method as well as the Cu content exerts a significant influence on catalyst activity. For the catalysts prepared by the first three preparation methods, with the increase of Cu content from 5 to 15 wt%, the maximum NO reduction conversion decreased slightly, but the temperature for the maximum NO reduction also decreased. For the xerogel Cu-Al2O3, there was a significant decrease in NO reduction conversion with the increase of Cu content from 5 to 10 wt%. In the absence of water vapour, the Cu-Al2O3 catalyst prepared by the impregnation method exhibited the highest activity toward NO reduction. The purity of alumina support was found to be a crucial factor to the activity of the Cu-Al2O3 catalyst prepared by impregnation. In the presence of water vapour, a substantial decrease in NO conversion was observed for the Cu-Al2O3 catalysts prepared by the first three methods, especially for the impregnated Cu-Al2O3 catalyst. In contrast, the presence of water vapour showed only a minor influence on the xerogel 5 wt% Cu-Al2O3 and it showed the highest activity for NO reduction in the presence of 20% water vapour. The xerogel 5 wt% Cu-Al2O3 catalyst was also found to be less affected by a 5 wt% sulfate deposition than the Cu-Al2O3 catalysts prepared by other methods.  相似文献   

11.
Catalytic reduction of NO by propene in the presence of oxygen was studied over SnO2-doped Ga2O3–Al2O3 prepared by sol–gel method. Although SnO2-doped Ga2O3–Al2O3 gave lower NO conversion than Ga2O3–Al2O3 in the absence of H2O, the activity was enhanced considerably by the presence of H2O and much higher than that of Ga2O3–Al2O3. The presence of SnO2 and Ga2O3–Al2O3 species having intimate Ga–O–Al bondings was found to be essential for the promotional effect of H2O. The promotional effect of H2O was interpreted by the following two reasons. The first one is the removal of carbonaceous materials deposited on the catalyst surface by H2O. The other is the selective inhibition by H2O of the reaction steps resulting in propene oxidation to COx without reducing NO.  相似文献   

12.
Feng-Yim Chang  Ming-Yen Wey 《Fuel》2009,88(9):1563-1571
This study investigated the activity of Rh/Al2O3 and Rh-Na/Al2O3 catalysts for polycyclic aromatic hydrocarbons (PAHs) removal and the influence of particulates, heavy metals, and acid gases (SO2 and HCl) on the performance of catalysts. The experiments were carried out in a laboratory-scale waste incineration system. Experimental results show that the destruction removal efficiency (DRE) of PAHs by Rh/Al2O3 and Rh-Na/Al2O3 catalysts were 80% and 59%, respectively when the flue gas did not contain any pollutants. The concentrations of PAHs increased by using a Rh/Al2O3 catalyst when the flue gas contained Cd, Pb, and SO2 and also increased by using a Rh-Na/Al2O3 catalyst when the flue gas contained particulates, Cd, and HCl. Adding Na to the Rh/Al2O3 catalyst can inhibit the increases of 3-4 ring PAHs when the flue gas contained Pb. The influence of acid gases on the performance of the Rh/Al2O3 and Rh-Na/Al2O3 catalysts followed the sequence SO2 > HCl > SO2 + HCl. The activity of the catalysts for PAHs removal was significantly suppressed by increased concentrations in particulates and Cd, yet promoted by a high Pb concentration. The results of ESCA analysis indicated that the presence of Cd and Pb did not change the chemical states of Rh and Na, but the presence of SO2 and HCl did.  相似文献   

13.
Nb2O5 loaded on the supports and mixed with oxides was studied to investigate the activity and acidity for Friedel-Crafts benzylation of anisole. From the study on the loaded catalysts, a preliminary conclusion for the selection of metal oxide was obtained; namely, such an acidic oxide as silica was suitable for the support of Nb2O5. Then, MoO3 and WO3 were mixed with Nb2O5, and prominent high catalytic activity and acidities were observed. Both oxides of Nb2O5-MoO3 and Nb2O5-WO3 showed almost similar behavior with respect to characterization and catalytic activity. Surface area increased, X-ray diffraction (XRD) and Raman bands were lost, acid sites, both Brønsted and Lewis characters generated, and surface acid site density was as high as 2–4 nm−2. The acid sites were generated on the amorphous metal oxides consisting of Nb and Mo or W oxides, different in nature from those of Nb2O5 calcined and un-calcined, and active for Friedel-Crafts benzylation.  相似文献   

14.
A novel bicobalt complex [Co2L2(C2H5OH)2Cl2] supported by 2-hydroxyisophthalaldehyde oxime was synthesized. This complex is an efficient catalyst for the coupling reaction of carbon dioxide and epoxides in presence of phenyltrimethylammonium tribromide (PTAT).  相似文献   

15.
Vanadium oxide and cerium oxide doped titania–zirconia mixed oxides were explored for oxidative dehydrogenation of ethylbenzene to styrene utilizing carbon dioxide as a soft oxidant. The investigated TiO2–ZrO2 mixed oxide support with high specific surface area (207 m2 g−1) was synthesized by a coprecipitation method. Over the calcined support (550 °C), a monolayer equivalent (15 wt.%) of V2O5, CeO2 or a combination of both were deposited by using wet-impregnation or co-impregnation methods to make the V2O5/TiO2–ZrO2, CeO2/TiO2–ZrO2 and V2O5–CeO2/TiO2–ZrO2 combination catalysts, respectively. These catalysts were characterized using X-ray diffraction (XRD), Raman, scanning electron microscopy (SEM), transmission electron microscopy (TEM), temperature preprogrammed reduction (TPR), CO2 temperature preprogrammed desorption (TPD) and BET surface area methods. All characterization studies revealed that the deposited promoter oxides are in a highly dispersed form over the support, and the combined acid–base and redox properties of the catalysts play a major role in this reaction. The V2O5–CeO2/TiO2–ZrO2 catalyst exhibited a better conversion and product selectivity than other combinations. In particular, the addition of CeO2 to V2O5/TiO2–ZrO2 prevented catalyst deactivation and helped to maintain a high and stable catalytic activity.  相似文献   

16.
Niobia-modified silica was used as support for nickel-based catalysts. Catalysts with different nickel loading were prepared by successive incipient-wetness impregnation of toluenic nickel octanoate solutions. The samples were characterised after both calcination and reduction by TEM-EDX techniques and tested in the ethane hydrogenolysis. Their catalytic behaviour was compared to that of related silica-supported nickel catalysts. A high suppression of hydrogenolysis activity (93–99%) was determined for the niobia-modified silica-supported nickel catalysts which do not show nickel particles on silica.  相似文献   

17.
Surface-phase ZrO2 on SiO2 (SZrOs) and surface-phase La2O3 on Al2O3 (SLaOs) were prepared with various loadings of ZrO2 and La2O3, characterized and used as supports for preparing Pt/SZrOs and Pt/SLaOs catalysts. CH4/CO2 reforming over the Pt/SZrOs and Pt/SLaOs catalysts was examined and compared with Pt/Al2O3 and Pt/SiO2 catalysts. CO2 or CH4 pulse reaction/adsorption analysis was employed to elucidate the effects of these surface-phase oxides.

The zirconia can be homogeneously dispersed on SiO2 to form a stable surface-phase oxide. The lanthana cannot be spread well on Al2O3, but it forms a stable amorphous oxide with Al2O3. The Pt/SZrOs and Pt/SLaOs catalysts showed higher steady activity than did Pt/SiO2 and Pt/Al2O3 by a factor of three to four. The Pt/SZrOs and Pt/SLaOs catalysts were also much more stable than the Pt/SiO2 and Pt/Al2O3 catalysts for long stream time and for reforming temperatures above 700 °C. These findings were attributed to the activation of CO2 adsorbed on the basic sites of SZrOs and SLaOs.  相似文献   


18.
The structural changes of T-Nb2O5 and V2O5 cathodes with discharge and recharge were investigated by X-ray photoelectron spectroscopy (ESCA) and X-ray diffractometory etc.ESCA spectra of the discharge products shows that M5+ is reduced to a lower valence state such as M4+ on the discharge, and the chemical bond between Li+ inserted into the oxide and O2? of the oxide exhibits a higher ionic character than that of Li2O. X-ray diffraction measurement shows that T-Nb2O5 gives the reversible structural change accompanying the disorder and order of the atomic arrangement on the charge-discharge cycling. On the other hand, V2O5 takes two discharge steps, within the 1st step of which it gives the reversible lattice change along b-axis caused by the intercalation of Li+ into the oxide layer, whereas within the 2nd step it is considered that the reaction in the charge-discharge takes place in the vicinity of the surface of the oxide particle. In both oxides, ternary phases such as LixM2O5 are produced as discharge products, where x is at least 2 for Nb2O5 and x is at least 3 for V2O5.  相似文献   

19.
The application of different techniques (diffuse reflectance-UV–vis, 51V NMR, FT-IR of adsorbed pyridine and TPR-H2) in the characterization of vanadia supported on mesoporous Al2O3 catalysts shows that the nature of the vanadium species depends on the V-loading. At V-content lower than 15 wt.% of V-atoms (30% of the theoretical monolayer), vanadium is mainly in a tetrahedral environment. Higher V-contents in the catalyst leads to the formation of octahedral V5+ species and V2O5-like species. Both XRD and textural results indicate that the mesoporous structure of the support is mostly maintained after the vanadium incorporation, and therefore high surface areas were obtained on the final catalysts. Al2O3-suppported vanadia catalysts are active and selective in the oxidative dehydrogenation of ethane, although the catalytic behavior depends on the V-loading. High rates of formation of ethylene per unit mass of catalyst per unit time have also been observed as a consequence of the high dispersion of V-atoms on the surface of the support.  相似文献   

20.
A series of nano-sized Ni/Al2O3 and Ni/La–Al2O3 catalysts that possess high activities for NH3 decomposition have been successfully synthesized by a coprecipitation method. The catalytic performance was investigated under the atmospheric conditions and a significant enhancement in the activity after the introduction of La was observed. Aiming to study the influence of La promoter on the physicochemical properties, we characterized the catalysts by N2 adsorption/desorption, XRD, H2-TPR, chemisorption and TEM techniques. Physisorption results suggested a high specific surface area and XRD spectra showed that nickel particles are in a highly dispersed state. A combination of XRD, TEM and chemisorption showed that Ni0 particles with the average size lower than 5.0 nm are always obtained even though the Ni loading ranged widely from 4 to 63%. Compared with the Ni/Al2O3 catalysts, the Ni/La–Al2O3 ones with an appropriate amount of promoter enjoy a more open mesoporous structure and higher dispersion of Ni. Reduction kinetic studies of prepared catalysts were investigated by temperature-programmed reduction (TPR) method and the fact that La additive partially destroyed the metastable Ni–Al mixed oxide phase was detailed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号