首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The proton-translocating F1F0 ATP synthase from Clostridium thermoautotrophicum was solubilized from cholate-washed membranes with Zwittergent 3-14 at 58 degrees C and purified in the presence of octylglucoside by sucrose gradient centrifugation and ion-exchange chromatography on a DEAE-5PW column. The purified enzyme hydrolyzed ATP at a rate of 12.6 micromol min(-1) mg(-1) at 58 degrees C and pH 8.5. It was composed of six different polypeptides with molecular masses of 60, 50, 32, 19, 17, and 8 kDa. These were identified as alpha, beta, gamma, delta, epsilon, and c subunits, respectively, as their N-terminal amino acid sequences matched the deduced N-terminal amino acid sequences of the corresponding genes of the atp operon sequenced from Clostridium thermoaceticum (GenBank accession no. U64318), demonstrating the close similarity of the F1F0 complexes from C. thermoaceticum and C. thermoautotrophicum. Four of these subunits, alpha, beta, gamma, and epsilon, constituted the F1-ATPase purified from the latter bacterium. The delta subunit could not be found in the purified F1 although it was present in the F1F0 complex, indicating that the F0 moiety consisted of the delta and the c subunits and lacked the a and b subunits found in many aerobic bacteria. The c subunit was characterized as N,N'-dicyclohexylcarbodiimide reactive. The F1F0 complex of C. thermoautotrophicum consisting of subunits alpha, beta, gamma, delta, epsilon, and c was reconstituted with phospholipids into proteoliposomes which had ATP-Pi exchange, carbonylcyanide p-trifluoromethoxy-phenylhydrazone-stimulated ATPase, and ATP-dependent proton-pumping activities. Immunoblot analyses of the subunits of ATP synthases from C. thermoautotrophicum, C. thermoaceticum, and Escherichia coli revealed antigenic similarities among the F1 subunits from both clostridia and the beta subunit of F1 from E. coli.  相似文献   

2.
The ATPase of Ilyobacter tartaricus was solubilized from the bacterial membranes and purified. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme revealed the usual subunit pattern of a bacterial F1F0 ATPase. The polypeptides with apparent molecular masses of 56, 52, 35, 16.5, and 6.5 kDa were identified as the alpha, beta, gamma, epsilon, and c subunits, respectively, by N-terminal protein sequencing and comparison with the sequences of the corresponding subunits from the Na(+)-translocating ATPase of Propionigenium modestum. Two overlapping sequences were obtained for the polypeptides moving with an apparent molecular mass of 22 kDa (tentatively assigned as b and delta subunits). No sequence could be determined for the putative a subunit (apparent molecular mass, 25 kDa). The c subunits formed a strong aggregate with the apparent molecular mass of 50 kDa which required treatment with trichloroacetic acid for dissociation. The ATPase was inhibited by dicyclohexyl carbodiimide, and Na+ ions protected the enzyme from this inhibition. The ATPase was specifically activated by Na+ or Li+ ions, markedly at high pH. After reconstitution into proteoliposomes, the enzyme catalyzed the ATP-dependent transport of Na+, Li+, or Hi+. Proton transport was specifically inhibited by Na+ or Li+ ions, indicating a competition between these alkali ions and protons for binding and translocation across the membrane. These experiments characterize the I. tartaricus ATPase as a new member of the family of FS-ATPases, which use Na+ as the physiological coupling ion for ATP synthesis.  相似文献   

3.
4.
The delta and b subunits are both involved in binding the F1 to the F0 part in the Escherichia coli ATP synthase (ECF1F0). The interaction of the purified delta subunit and the isolated hydrophilic domain of the b subunit (bsol) has been studied here. Purified delta binds to bsol weakly in solution, as indicated by NMR studies and protease protection experiments. On F1, i.e. in the presence of ECF1-delta, delta, and bsol interact strongly, and a complex of ECF1.bsol can be isolated by native gel electrophoresis. Both delta subunit and bsol are protected from trypsin cleavage in this complex. In contrast, the delta subunit is rapidly degraded by the protease when bound to ECF1 when bsol is absent. The interaction of bsol with ECF1 involves the C-terminal domain of delta as delta(1-134) cannot replace intact delta in the binding experiments. As purified, bsol is a stable dimer with 80% alpha helix. A monomeric form of bsol can be obtained by introducing the mutation A128D (Howitt, S. M., Rodgers, A. J.,W., Jeffrey, P. D., and Cox, G. B. (1996) J. Biol. Chem. 271, 7038-7042). Monomeric bsol has less alpha helix, i.e. only 58%, is much more sensitive to trypsin cleavage than dimer, and unfolds at much lower temperatures than the dimer in circular dichroism melting studies, indicating a less stable structure. The bsol dimer, but not monomer, binds to delta in ECF1. To examine whether subunit b is a monomor or dimer in intact ECF1F0, CuCl2 was used to induce cross-link formation in the mutants bS60C, bQ104C, bA128C, bG131C, and bS146C. With the exception of bS60C, CuCl2 treatment resulted in formation of b subunit dimers in all mutants. Cross-linking yield was independent of nucleotide conditions and did not affect ATPase activity. These results show the b subunit to be dimeric for a large portion of the C terminus, with residues 124-131 likely forming a pair of parallel alpha helices.  相似文献   

5.
The soluble portion of the Escherichia coli F1F0 ATP synthase (ECF1) and E. coli F1F0 ATP synthase (ECF1F0) have been isolated from a novel mutant gammaY205C. ECF1 isolated from this mutant had an ATPase activity 3.5-fold higher than that of wild-type enzyme and could be activated further by maleimide modification of the introduced cysteine. This effect was not seen in ECF1F0. The mutation partly disrupts the F1 to F0 interaction, as indicated by a reduced efficiency of proton pumping. ECF1 containing the mutation gammaY205C was bound to the membrane-bound portion of the E. coli F1F0 ATP synthase (ECF0) isolated from mutants cA39C, cQ42C, cP43C, and cD44C to reconstitute hybrid enzymes. Cu2+ treatment or reaction with 5,5'-dithio-bis(2-nitro-benzoic acid) induced disulfide bond formation between the Cys at gamma position 205 and a Cys residue at positions 42, 43, or 44 in the c subunit but not at position 39. Using Cu2+ treatment, this covalent cross-linking was obtained in yields as high as 95% in the hybrid ECF1 gammaY205C/cQ42C and in ECF1F0 isolated from the double mutant of the same composition. The covalent linkage of the gamma to a c subunit had little effect on ATPase activity. However, ATP hydrolysis-linked proton translocation was lost, by modification of both gamma Cys-205 and c Cys-42 by bulky reagents such as 5,5'-dithio-bis (2-nitro-benzoic acid) or benzophenone-4-maleimide. In both ECF1 and ECF1F0 containing a Cys at gamma 205 and a Cys in the epsilon subunit (at position 38 or 43), cross-linking of the gamma to the epsilon subunit was induced in high yield by Cu2+. No cross-linking was observed in hybrid enzymes in which the Cys was at position 10, 65, or 108 of the epsilon subunit. Cross-linking of gamma to epsilon had only a minimal effect on ATP hydrolysis. The reactivity of the Cys at gamma 205 showed a nucleotide dependence of reactivity to maleimides in both ECF1 and ECF1F0, which was lost in ECF1 when the epsilon subunit was removed. Our results show that there is close interaction of the gamma and epsilon subunits for the full-length of the stalk region in ECF1F0. We argue that this interaction controls the coupling between nucleotide binding sites and the proton channel in ECF1F0.  相似文献   

6.
Cross-linking studies on the Escherichia coli F0F1-ATP synthase indicated a site of interaction involving gamma and epsilon subunits in F1 and subunit c in F0 (Watts, S. D., Tang, C., and Capaldi, R. A. (1996) J. Biol. Chem. 271, 28341-28347). To assess the function of these interactions, we introduced random mutations in this region of the gamma subunit (gamma194-213). One mutation, gammaGlu-208 to Lys (gammaE208K), caused a temperature-sensitive defect in oxidative phosphorylation-dependent growth. ATP hydrolytic rates of the gammaE208K F0F1 enzyme became increasingly uncoupled from H+ pumping above 28 degreesC. In contrast, Arrhenius plot of steady-state ATP hydrolysis of the mutant enzyme was linear from 20 to 50 degreesC. Analysis of this plot revealed a significant increase in the activation energy of the catalytic transition state to a value very similar to soluble, epsilon subunit-inhibited F1 and suggested that the mutation blocked normal release of epsilon inhibition of ATP hydrolytic activity upon binding of F1 to F0. The difference in temperature dependence suggested that the gammaE208K mutation perturbed release of inhibition via a different mechanism than it did energy coupling. Suppressor mutations in the polar loop of subunit c restored ATP-dependent H+ pumping and transition state thermodynamic parameters close to wild-type values indicating that interactions between gamma and c subunits mediate release of epsilon inhibition and communication of coupling information.  相似文献   

7.
We have studied the change of the catalytic activity of chimeric complexes that were formed by chloroplast coupling factor 1 (CF1) -gamma, alpha and beta subunits of thermophilic bacterial F1 after formation or reduction of the disulfide bridge of different gamma subunits modified by oligonucleotide-directed mutagenesis techniques. For this purpose, three mutant gamma subunits were produced: gamma Delta194-230, here 37 amino acids from Pro-194 to Ile-230 are deleted, gammaC199A, Cys-199 is changed to Ala, and gamma Delta200-204, amino acids from Asp-200 to Lys-204 are deleted. All of the chimeric subunit complexes produced from each of these mutant CF1-gamma subunits and alpha and beta subunits from thermophilic bacterial F1 lost the sensitivity against thiol reagents when compared with the complex containing wild-type CF1-gamma. The pH optimum (pH 8.5-9.0) and the concentration of methanol to stimulate ATPase activities were not affected by these mutations. These indicate that the introduction of the mutations did not change the main features of ATPase activity of the chimeric complex. However, the interaction between gamma subunit and epsilon subunit was strongly influenced by the type of gamma subunit itself. Although the ATPase activity of the chimeric complex that contained gamma Delta200-204 or gammaC199A was inhibited by the addition of recombinant epsilon subunit from CF1 similarly to complexes containing the reduced wild-type gamma subunit, the recombinant epsilon subunit did not inhibit the ATPase of the complex, which contained the oxidized form of gamma subunit. Therefore the affinity of the epsilon subunit to the gamma subunit may be dependent on the state of the gamma subunit or the epsilon subunit may bind to the oxidized form of gamma subunit in a mode that does not inhibit the activity. The ATPase activity of the complex that contains gamma Delta194-230 was not efficiently inhibited by epsilon subunit. These results show that the formation or reduction of the disulfide bond on the gamma subunit may induce a conformational change in the region that directly affects the interaction of this subunit with the adjacent epsilon subunit.  相似文献   

8.
An affinity resin for the F1 sector of the Escherichia coli ATP synthase was prepared by coupling the b subunit to a solid support through a unique cysteine residue in the N-terminal leader. b24-156, a form of b lacking the N-terminal transmembrane domain, was able to compete with the affinity resin for binding of F1. Truncated forms of b24-156, in which one or four residues from the C terminus were removed, competed poorly for F1 binding, suggesting that these residues play an important role in b-F1 interactions. Sedimentation velocity analytical ultracentrifugation revealed that removal of these C-terminal residues from b24-156 resulted in a disruption of its association with the purified delta subunit of the enzyme. To determine whether these residues interact directly with delta, cysteine residues were introduced at various C-terminal positions of b and modified with the heterobifunctional cross-linker benzophenone-4-maleimide. Cross-links between b and delta were obtained when the reagent was incorporated at positions 155 and 158 (two residues beyond the normal C terminus) in both the reconstituted b24-156-F1 complex and the membrane-bound F1F0 complex. CNBr digestion followed by peptide sequencing showed the site of cross-linking within the 177-residue delta subunit to be C-terminal to residue 148, possibly at Met-158. These results indicate that the b and delta subunits interact via their C-terminal regions and that this interaction is instrumental in the binding of the F1 sector to the b subunit of F0.  相似文献   

9.
The genes encoding the five subunits of the F1 portion of the ATPases from both spinach chloroplasts and the cyanobacterium Synechocystis sp. PCC 6803 were cloned into expression vectors and expressed in Escherichia coli. The recombinant subunits formed inclusion bodies within the cells. Each particular subunit was expressed in the respective unc mutant, each unable to grow on non-fermentable carbon sources. The following subunits restored growth under conditions of oxidative phosphorylation: alpha (both sources, cyanobacterial subunit more than spinach subunit), beta (cyanobacterial subunit only), delta (both spinach and Synechocystis), and epsilon (both sources), whereas no growth was achieved with the gamma subunits from both sources. Despite a high degree of sequence homology the large subunits alpha and beta of spinach and cyanobacterial F1 were not as effective in the substitution of their E. coli counterparts. On the other hand, the two smallest subunits of the E. coli ATPase could be more effectively replaced by their cyanobacterial or chloroplast counterparts, although the sequence identity or even similarity is very low. We attribute these findings to the different roles of these subunits in F1: The large alpha and beta subunits contribute to the catalytic centers of the enzyme, a function rendering them very sensitive to even minor changes. For the smaller delta and epsilon subunits it was sufficient to maintain a certain tertiary structure during evolution, with little emphasis on the conservation of particular amino acids.  相似文献   

10.
The shape and subunit arrangement of the Escherichia coli F1 ATPase (ECF1 ATPase) was investigated by synchrotron radiation x-ray solution scattering. The radius of gyration and the maximum dimension of the enzyme complex are 4.61 +/- 0.03 nm and 15.5 +/- 0.05 nm, respectively. The shape of the complex was determined ab initio from the scattering data at a resolution of 3 nm, which allowed unequivocal identification of the volume occupied by the alpha3beta3 subassembly and further positioning of the atomic models of the smaller subunits. The delta subunit was positioned near the bottom of the alpha3beta3 hexamer in a location consistent with a beta-delta disulfide formation in the mutant ECF1 ATPase, betaY331W:betaY381C:epsilonS108C, when MgADP is bound to the enzyme. The position and orientation of the epsilon subunit were found by interactively fitting the solution scattering data to maintain connection of the two-helix hairpin with the alpha3beta3 complex and binding of the beta-sandwich domain to the gamma subunit. Nucleotide-dependent changes of the delta subunit were investigated by stopped-flow fluorescence technique at 12 degrees C using N-[4-[7-(dimethylamino)-4-methyl]coumarin-3-yl]maleimide (CM) as a label. Fluorescence quenching monitored after addition of MgATP was rapid [k = 6.6 s-1] and then remained constant. Binding of MgADP and the noncleavable nucleotide analog AMP . PNP caused an initial fluorescent quenching followed by a slower decay back to the original level. This suggests that the delta subunit undergoes conformational changes and/or rearrangements in the ECF1 ATPase during ATP hydrolysis.  相似文献   

11.
The T cell receptor (TCR) consists of the Ti alpha beta heterodimer and the associated CD3 gamma delta epsilon and zeta 2 chains. The structural relationships between the subunits of the TCR complex are still not fully known. In this study we examined the role of the extracellular (EC), transmembrane (TM), and cytoplasmic (CY) domain of CD3 gamma in assembly and cell surface expression of the complete TCR in human T cells. A computer model indicated that the EC domain of CD3 gamma folds as an Ig domain. Based on this model and on alignment studies, two potential interaction sites were predicted in the EC domain of CD3 gamma. Site-directed mutagenesis demonstrated that these sites play a crucial role in TCR assembly probably by binding to CD3 epsilon. Mutagenesis of N-linked glycosylation sites showed that glycosylation of CD3 gamma is not required for TCR assembly and expression. In contrast, treatment of T cells with tunicamycin suggested that N-linked glycosylation of CD3 delta is required for TCR assembly. Site-directed mutagenesis of the acidic amino acid in the TM domain of CD3 gamma demonstrated that this residue is involved in TCR assembly probably by binding to Ti beta. Deletion of the entire CY domain of CD3 gamma did not prevent assembly and expression of the TCR. In conclusion, this study demonstrated that specific TCR interaction sites exist in both the EC and TM domain of CD3 gamma. Furthermore, the study indicated that, in contrast to CD3 gamma, glycosylation of CD3 delta is required for TCR assembly and expression.  相似文献   

12.
ATP synthase mediates proton flow through its membrane portion, F0, which drives the synthesis of ATP in its headpiece, F1. The F1-portion contains a hexagonal array of three subunits alpha and three beta encircling a central subunit gamma, that in turn interacts with a smaller epsilon and with F0. Recently we reported that the application of polarized absorption recovery after photobleaching showed the ATP-driven rotation of gamma over at least two, if not three, beta. Here we extend probes of such rotation aided by a new theory for assessing continuous versus stepped, Brownian versus unidirectional molecular motion. The observed relaxation of the absorption anisotropy is fully compatible with a unidirectional and stepping rotation of gamma over three equidistantly spaced angular positions in the hexagon formed by the alternating subunits alpha and beta. The results strongly support a rotational catalysis with equal participation of all three catalytic sites. In addition we report a limited rotation of gamma without added nucleotides, perhaps idling and of Brownian nature, that covers only a narrow angular domain.  相似文献   

13.
The interaction between the hydrophilic C-terminal part of subunit 4 (subunit b) and OSCP, which are two components of the connecting stalk of the yeast ATP synthase, was shown after reconstitution of the two over-expressed proteins and by the two-hybrid method. The organization of a part of the F0 sector was studied by the use of mutants containing cysteine residues in a loop connecting the two N-terminal postulated membrane-spanning segments. Labelling of the mutated subunits 4 by a maleimide fluorescent probe revealed that the sulfhydryl groups were modified upon incubation of intact mitochondria. In addition, non-permeant maleimide reagents labeled subunit 4D54C, thus showing a location of this residue in the intermembrane space. Cross-linking experiments revealed the proximity of subunits 4 and f. In addition, a disulfide bridge between subunit 4D54C and subunit 6 was evidenced, thus demonstrating near-neighbor relationships of the two subunits and a location of the N-terminal part of the mitochondrially-encoded subunit 6 in the intermembrane space.  相似文献   

14.
Diamide treatment of the F0F1-ATP synthase in "inside out" submitochondrial particles (ESMP) in the absence of a respiratory Delta mu H+ as well as of isolated Fo reconstituted with F1 or F1-gamma subunit results in direct disulfide cross-linking between cysteine 197 in the carboxy-terminal region of the F0I-PVP(b) subunit and cysteine 91 at the carboxyl end of a small alpha-helix of subunit F1-gamma, both located in the stalk. The F0I-PVP(b) and F1-gamma cross-linking cause dramatic enhancement of oligomycin-sensitive decay of Delta mu H+. In ESMP and MgATP particles the cross-linking is accompanied by decoupling of respiratory ATP synthesis. These effects are consistent with the view that F0I-PVP(b) and F1-gamma are components of the stator and rotor of the proposed rotary motor, respectively. The fact that the carboxy-terminal region of F0I-PVP(b) and the short alpha-helix of F1-gamma can form a direct disulfide bridge shows that these two protein domains are, at least in the resting state of the enzyme, in direct contact. In isolated F0, diamide also induces cross-linking of OSCP with another subunit of F0, but this has no significant effect on proton conduction. When ESMP are treated with diamide in the presence of Delta mu H+ generated by respiration, neither cross-linking between F0I-PVP(b) and F1-gamma subunits nor the associated effects on proton conduction and ATP synthesis is observed. Cross-linking is restored in respiring ESMP by Delta mu H+ collapsing agents as well as by DCCD or oligomycin. These observations indicate that the torque generated by Delta mu H+ decay through Fo induces a relative motion and/or a separation of the F0I-PVP(b) subunit and F1-gamma which places the single cysteine residues, present in each of the two subunits, at a distance at which they cannot be engaged in disulfide bridging.  相似文献   

15.
16.
cDNA sequences encompassing the full coding region for the human muscle acetylcholine receptor (AChR) epsilon and gamma subunits have been isolated. The deduced amino-acid sequences indicate that the mature epsilon subunit contains 473 amino acids and is preceded by a 20-amino-acid signal peptide. As predicted from genomic clones, the gamma subunit contains 495 amino acids preceded by a 22-amino-acid signal peptide. In common with the human alpha, beta, gamma and delta subunits the epsilon subunit is highly conserved between mammalian species. The epsilon subunit gene is not closely linked to the gamma and delta subunits on chromosome 2 but rather is located with the beta subunit on chromosome 17. Expression of the alpha-, beta-, gamma-, delta- and epsilon-subunit cRNAs in rabbit-reticulocyte lysates followed by analysis on SDS/PAGE show glycosylated proteins with apparent molecular masses of 44-60 kDa.  相似文献   

17.
A method for reconstitution of membrane proteins into unilamellar liposomes is described. The model enzyme was the F0F1 ATP synthase from mitochondria when in complex or free from its inhibitor protein. The enzymes were first solubilized with either of two detergents, i.e., n-dodecyl-beta-D maltoside or lauryldimethylamine oxide. After solubilization, the enzymes were passed through a column of Sepharose-AH using an ADP/sodium cholate selective elution buffer. The enzymes recovered from the column were subsequently passed through a centrifuge column of Sephadex G-50 fine. The eluate contained liposomes in which the F0F1 complex (with and without inhibitor protein) had been reconstituted. The reconstituted enzymes were capable of hydrolyzing ATP with formation of electrochemical H+ gradients. They also catalyzed the ATP-Pi exchange reactions. Thus the F0F1 complex which is formed by 18 subunits can be rapidly reconstituted into liposomes in a fully functional state. Moreover the data show that the interactions between the enzyme and its inhibitor protein are not perturbed in the reconstitution procedure.  相似文献   

18.
The coupling of receptors to heterotrimeric G proteins is determined by interactions between the receptor and the G protein alpha subunits and by the composition of the betagamma dimers. To determine the role of the gamma subunit prenyl modification in this interaction, the CaaX motifs in the gamma1 and gamma2 subunits were altered to direct modification with different prenyl groups, recombinant betagamma dimers expressed in the baculovirus/Sf9 insect cell system, and the dimers purified. The activity of the betagamma dimers was compared in two assays: formation of the high affinity agonist binding conformation of the A1 adenosine receptor and receptor-catalyzed exchange of GDP for GTP on the alpha subunit. The beta1gamma1 dimer (modified with farnesyl) was significantly less effective than beta1gamma2 (modified with geranylgeranyl) in either assay. The beta1gamma1-S74L dimer (modified with geranylgeranyl) was nearly as effective as beta1gamma2 in either assay. The beta1gamma2-L71S dimer (modified with farnesyl) was significantly less active than beta1gamma2. Using 125I-labeled betagamma subunits, it was determined that native and altered betagamma dimers reconstituted equally well into Sf9 membranes containing A1 adenosine receptors. These data suggest that the prenyl group on the gamma subunit is an important determinant of the interaction between receptors and G protein gamma subunits.  相似文献   

19.
Mutants of ECF1-ATPase were generated, containing cysteine residues in one or more of the following positions: alphaSer-411, betaGlu-381, and epsilonSer-108, after which disulfide bridges could be created by CuCl2 induced oxidation in high yield between alpha and epsilon, beta and epsilon, alpha and gamma, beta and gamma (endogenous Cys-87), and alpha and beta. All of these cross-links lead to inhibition of ATP hydrolysis activity. In the two double mutants, containing a cysteine in epsilonSer-108 along with either the DELSEED region of beta (Glu-381) or the homologous region in alpha (Ser-411), there was a clear nucleotide dependence of the cross-link formation with the epsilon subunit. In betaE381C/epsilonS108C the beta-epsilon cross-link was obtained preferentially when Mg2+ and ADP + Pi (addition of MgCl2 + ATP) was present, while the alpha-epsilon cross-link product was strongly favored in the alphaS411C/epsilonS108C mutant in the Mg2+ ATP state (addition of MgCl2 + 5'-adenylyl-beta,gamma-imidodiphosphate). In the triple mutant alphaS411C/betaE381C/epsilonS108C, the epsilon subunit bound to the beta subunit in Mg2+-ADP and to the alpha subunit in Mg2+-ATP, indicating a significant movement of this subunit. The gamma subunit cross-linked to the beta subunit in higher yield in Mg2+-ATP than in Mg2+-ADP, and when possible, i.e. in the triple mutant, always preferred the interaction with the beta over the alpha subunit.  相似文献   

20.
Rotation of the epsilon subunit in F1-ATPase from thermophilic Bacillus strain PS3 (TF1) was observed under a fluorescence microscope by the method used for observation of the gamma subunit rotation (Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K., Jr. (1997) Nature 386, 299-302). The alpha3 beta3 gamma epsilon complex of TF1 was fixed to a solid surface, and fluorescently labeled actin filament was attached to the epsilon subunit through biotin-streptavidin. In the presence of ATP, the filament attached to epsilon subunit rotated in a unidirection. The direction of the rotation was the same as that observed for the gamma subunit. The rotational velocity was slightly slower than the filament attached to the gamma subunit, probably due to the experimental setup used. Thus, as suggested from biochemical studies (Aggeler, R., Ogilvie, I. , and Capaldi, R. A. (1997) J. Biol. Chem. 272, 19621-19624), the epsilon subunit rotates with the gamma subunit in F1-ATPase during catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号