首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
田春艳  姜海  刘宁 《硅酸盐通报》2010,29(5):1169-1174
采用热压烧结方法制备了Si3N4-TiN纳米复相陶瓷,研究了纳米TiN颗粒的添加对Si3N4陶瓷组织、力学性能和抗热震性能的影响.研究结果表明:Si3N4-TiN纳米复相陶瓷的显微组织由粒径为100 nm左右的晶粒构成,TiN以独立颗粒的形式存在;纳米TiN颗粒的添加可以提高纳米Si3N4陶瓷的断裂韧性和抗弯强度,但对硬度影响不大;适量TiN颗粒的添加能改善纳米Si3N4陶瓷的抗热震性.  相似文献   

2.
以Si3N4,AlN和TiO2为原料,Y2O3和Al2O3为烧结助剂,通过添加柠檬酸铵作为TiO2的分散剂,采用原位反应合成法制备TiN体积分数为5%的Si3N4-TiN复相陶瓷,在高温烧结过程中原料中的TiO2和AlN反应生成TiN.通过扫描电子显微镜观察了柠檬酸铵分散剂用量对Si3N4-TiN复相陶瓷显微结构的影响.结果表明:添加柠檬酸铵分散剂降低原料混合粉体中TiO2的团聚,获得组分均匀的Si3N4-TiO2-AlN复合粉体,从而提高Si3N4-TiN复相陶瓷中TiN相在Si3N4基体中的分散性,烧结后获得显微结构均匀的Si3N4-TiN复相陶瓷.当在体系中添加0.20g柠檬酸铵分散剂可以显著改善Si3N4-TiN复相陶瓷的显微结构,TiN晶粒被控制在0.2~0.3μm.  相似文献   

3.
氮化硅-氮化钛陶瓷的氧化行为是建立在对其微观结构的观察,对这种氧化模型现象进行了描述,并对其氧化动力学模型进行研究。当温度<1 000℃,只有TiN相被氧化。此氧化过程是由氧气通过TiO2扩散来控制的,由氧化动力学抛物线方程来描述。超过1 000℃的过程是非常复杂的,那是因为同时发生Si3N4和TiN相的两种氧化反应。三种氧化模型都被清晰的扩散机理所控制,是接连发生的。第1步,Si3N4和TiN相被独立的氧化,它们分别被氧化为SiO2和TiO2相。Si3N4的氧化是由氧通过SiO2扩散控制的,而TiN的氧化由钛通过TiO2扩散所控制。第2步,TiN的氧化被氧通过TiO2扩散控制,而通过SiO2被氧化形成Si3N4。第3步,TiN和Si3N4的氧化由氧通过二氧化硅层扩散控制。动力学方程可以由这三种氧化模型的任意一种决定。  相似文献   

4.
以微米级Si3N4和h-BN粉末为原料,CaF2–Al2O3–Y2O3为烧结助剂,采用常压烧结工艺制备了BN体积含量为25%的Si3N4/BN复相陶瓷。研究了CaF2添加量对Si3N4/BN复相陶瓷材料力学性能的影响,并通过X射线衍射和场发射扫描电镜分析了复相陶瓷的物相组成和显微组织。结果表明:随着CaF2添加量增加,制备的Si3N4/BN复相陶瓷材料气孔率逐渐增大,收缩率变小,相对密度减小。添加量为2%(质量分数)时,Si3N4/BN复相陶瓷的室温抗弯强度达145.5MPa。添加适量的CaF2可在Si3N4/BN复相陶瓷材料常压烧结过程中较大程度地破坏h-BN的卡片房式结构,将微米级的h-BN颗粒变成纳米级颗粒。  相似文献   

5.
以硅(Si)粉、六方氮化硼(h-BN)为原料,在氮气(N2)中用燃烧合成(combustion synthesis,CS)气固反应法,原位生成可加工氮化硅/氮化硼(Si3N4/h-BN)复相陶瓷.考察了h-BN不同体积分数(下同)对Si3N4/h-BN复相陶瓷可加工性的影响.结果表明:在实验条件下,Si粉氮化完全,不存在残余的游离Si.Si3N4/h-BN复相陶瓷中以柱状β-Si3N4为主相,β-Si3N4晶粒之间为针状h-BN相.随着h-BN相含量的增加,Si3N4/h-BN复相陶瓷的可加工性提高,抗弯强度先减小后增加.h-BN含量为25%时,Si3N4/h-BN复相陶瓷的抗弯强度最低.  相似文献   

6.
梁振华  张海龙  李军  胡坤  彭桂花 《硅酸盐学报》2012,40(12):1717-1720
以α-Si3N4粉为原料、MgSiN2粉为烧结助剂,在1563℃热压1h制备出半透明α/βSi3N4复相陶瓷。X射线衍射分析结果表明,半透明α/βSi3N4复相陶瓷由85%(质量分数,下同)α-Si3N4和15%β-Si3N4组成。半透明α/βSi3N4复相陶瓷具有和Mg-α-SiAlON陶瓷相似的透光性质,样品厚度为0.42mm,其透过率随波长增加而增大,波长在3.3μm处透过率最大,达到66%,在2.0~4.5μm波长范围,透过率保持在50%以上,随后透过率迅速降低,在5.0μm处截止。  相似文献   

7.
以微米级Si3N4和h-BN粉末为原料,Yb2O3-Al2O3-Y2O3为烧结助剂,采用常压烧结工艺制备了BN体积含量为25%的多孔Si3N4/25%h-BN复相陶瓷。研究了Yb2O3添加量对Si3N4/25%BN复相陶瓷力学性能的影响,通过X射线衍射和扫描电子显微镜分析了复相陶瓷的物相组成和显微结构。结果表明:随着Yb2O3添加量增加,制备的Si3N4/25%BN复相陶瓷的气孔率逐渐增大,收缩率变小,相对密度减小。Yb2O3添加量为2%(质量分数)时,Si3N4/25%BN复相陶瓷的气孔率为15.1%,相对密度为72.8%;当Yb2O3添加量提高至15%时复相陶瓷的气孔率增加至32.1%,相对密度则降至60.3%。同时随着Yb2O3添加量增加,复相陶瓷的室温抗弯强度先增大后减小,Yb2O3含量为4%时,室温抗弯强度呈现最大值,可达264.3MPa。  相似文献   

8.
针对高精密氮化硅陶瓷器件的需求,采用金属蒸发真空电弧离子注入机进行金属Al+3注入Si3N4,并对其抗氧化性能进行了研究.注入能量为40 keV,注入剂量分别为5×1016 ion/cm2和2×1017 ion/cm2.在1 200 ℃,长达77 h,对Si3N4的循环氧化行为进行了实验研究.用SEM,XRD和EDS等方法对样品进行了观察和分析.结果表明Al+3注入提高了Si3N4样品的抗氧化性能,氧化质量变化符合抛物线规律.原始Si3N4样品的氧化层较厚,与基体有较明显的分层现象;注入铝的Si3N4试样氧化层较薄和致密,与基体没有明显的分层现象,电子价态分析表明注入的金属铝形成的氧化铝是提高Si3N4抗氧化性能的主要原因.  相似文献   

9.
用放电等离子烧结制备了Si3N4/A12O3纳米复相陶瓷.在1 450℃,当Si3N4质量分数为10%时,Si3N4/A12O3纳米复相陶瓷的韧性达到5.261MPa·m1/2,与纯Al2O3的断裂韧性4.014MPa·m1/2相比提高了31.1%.X射线衍射分析表明在高温烧结形成了sailon相.扫描电镜显微分析显示复相陶瓷具有晶内/晶界混合型结构,增韧机制主要为微裂纹增韧和残余应力增韧.  相似文献   

10.
采用近净尺寸成型制备工艺–氧化烧结结合溶胶浸渍再烧结法,制备了多孔Si3N4–SiO2复相陶瓷。讨论了制备工艺对材料的成分、微结构和性能的影响规律。研究表明:随着硅溶胶浸渍量的增加,材料的抗弯强度、硬度、断裂韧性、密度和介电常数均增大。分别采用压痕法和单边切口梁法对材料的断裂韧性进行了测定和比较。结果表明:采用压痕法测定断裂韧性时,多孔Si3N4–SiO2复相陶瓷的增韧机理有裂纹偏转、裂纹分叉、裂纹桥接以及孔的钝化。采用单边切口梁法测定断裂韧性时,多孔Si3N4–SiO2复相陶瓷的增韧机理只有裂纹偏转。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号