首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
Yeast cells defective in the GGS1 (FDP1/BYP1) gene are unable to adapt to fermentative metabolism. When glucose is added to derepressed ggs1 cells, growth is arrested due to an overloading of glycolysis with sugar phosphates which eventually leads to a depletion of phosphate in the cytosol. Ggs1 mutants lack all glucose-induced regulatory effects investigated so far. We reduced hexokinase activity in ggs1 strains by deleting the gene HXK2 encoding hexokinase PII. The double mutant ggs1 delta, hxk2 delta grew on glucose. This is in agreement with the idea that an inability of the ggs1 mutants to regulate the initiation of glycolysis causes the growth deficiency. However, the ggs1 delta, hxk2 delta double mutant still displayed a high level of glucose-6-phosphate as well as the rapid appearance of free intracellular glucose. This is consistent with our previous model suggesting an involvement of GGS1 in transport-associated sugar phosphorylation. Glucose induction of pyruvate decarboxylase, glucose-induced cAMP-signalling, glucose-induced inactivation of fructose-1,6-bisphosphatase, and glucose-induced activation of the potassium transport system, all deficient in ggs1 mutants, were restored by the deletion of HXK2. However, both the ggs1 delta and the ggs1 delta, hk2 delta mutant lack detectable trehalose and trehalose-6-phosphate synthase activity. Trehalose is undetectable even in ggs1 delta strains with strongly reduced activity of protein kinase A which normally causes a very high trehalose content. These data fit with the recent cloning of GGS1 as a subunit of the trehalose-6-phosphate synthase/phosphatase complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
In the yeast Saccharomyces cerevisiae, trehalose-6-phosphate (tre-6-P) synthase encoded by GGS1/TPS1, is not only involved in the production of trehalose but also in restriction of sugar influx into glycolysis in an unknown fashion; it is therefore essential for growth on glucose or fructose. In this work, we have deleted the TPS2 gene encoding tre-6-P phosphatase in a strain which displays very low levels of Ggs1/TPS1, as a result of the presence of the byp 1-3 allele of GGS1/TPS1. The byp 1-3 tps2 delta double mutant showed elevated tre-6-P levels along with improved growth and ethanol production, although the estimated concentrations of glycolytic metabolites indicated excessive sugar influx. In the wild-type strain, the addition of glucose caused a rapid transient increase of tre-6-P. In tps 2 delta mutant cells, which showed a high tre-6-P level before glucose addition, sugar influx into glycolysis appeared to be diminished. Furthermore, we have confirmed that tre-6-P inhibits the hexokinases in vitro. These data are consistent with restriction of sugar influx into glycolysis through inhibition of the hexokinases by tre-6-P during the switch to fermentative metabolism. During logarithmic growth on glucose the tre-6-P level in wild-type cells was lower than that of the byp 1-3 tps2 delta mutant. However, the latter strain arrested growth and ethanol production on glucose after about four generations. Hence, other mechanisms, which also depend on Ggs1/Tps1, appear to control sugar influx during growth on glucose. In addition, we provide evidence that the requirement for Ggs1/Tps1 for sporulation may be unrelated to its involvement in trehalose metabolism or in the system controlling glycolysis.  相似文献   

3.
4.
We describe here that the HXK2 gene product, isoenzyme PII of hexokinase, is located in both the nucleus and the cytoplasm of Saccharomyces cerevisiae cells. This conclusion is supported by assays of hexokinase-specific activity in isolated nuclei from wild-type and hxk1lhxk2 double mutant strains, by immunoblot experiments using anti-Hxk2 antibodies and by observation of the fluorescence distribution of a Hxk2-GFP fusion protein in cells transformed with the HXK2::gfp gene.  相似文献   

5.
The TPS1 gene from Candida albicans, which encodes trehalose-6-phosphate synthase, has been cloned by functional complementation of a tps1 mutant from Saccharomyces cerevisiae. In contrast with the wild-type strain, the double tps1/tps1 disruptant did not accumulate trehalose at stationary phase or after heat shock. Growth of the tps1/tps1 disruptant at 30 degreesC was indistinguishable from that of the wild type. However, at 42 degreesC it did not grow on glucose or fructose but grew normally on galactose or glycerol. At 37 degreesC, the yeast-hypha transition in the mutant in glucose-calf serum medium did not occur. During growth at 42 degreesC, the mutant did not form hyphae in galactose or in glycerol. Some of the growth defects observed may be traced to an unbalanced sugar metabolism that reduces the cellular content of ATP. Mice inoculated with 10(6) CFU of the tps1/tps1 mutant did not show visible symptoms of infection 16 days after inoculation, while those similarly inoculated with wild-type cells were dead 12 days after inoculation.  相似文献   

6.
Isolated ventral and dorsal rat spinal roots incubated in normal (2.5 mM) or high glucose (25 mM) concentrations or in high concentrations of other hexoses were exposed transiently to hypoxia (30 min) in a solution of low buffering power. Compound nerve action potentials, extracellular direct current potentials, and interstitial pH were continuously recorded before, during, and after hypoxia. Ventral roots incubated in 25 mM D-glucose showed resistance to hypoxia. Dorsal roots, on the other hand, revealed electrophysiological damage by hyperglycemic hypoxia as indicated by a lack of posthypoxic recovery. In both types of spinal roots, interstitial acidification was most pronounced during hyperglycemic hypoxia. The changes in the sensitivity to hypoxia induced by high concentrations of D-glucose were imitated by high concentrations of D-mannose. In contrast, D-galactose, L-glucose, D-fructose, and L-fucose did not have such effects. Resistance to hypoxia, hypoxia-generated interstitial acidification, and hypoxia-induced electrophysiological damage were absent after pharmacological inhibition of nerve glycolysis with iodoacetate. These observations indicate 1) that enhanced anaerobic glycolysis produces resistance to hypoxia in hyperglycemic peripheral nerves and 2) that acidification may impair the function of peripheral axons when anaerobic glycolysis proceeds in a tissue with reduced buffering power.  相似文献   

7.
Blood serum of oncologic patients due to immunoglobulin involved in its composition, activates glycolysis in the soluble fraction of muscles when using starch, glycogen and glucose as substrates. The activation is registered under both aerobic and anaerobic conditions. When elucidating the immunoglobulin effect in a glycolytic chain under aerobic conditions it is shown that its activating effect in the incomplete incubation system is manifested with such glycolysis substrates as fructose-6-phosphate and 2-phosphoglyceric acid. Glycolysis activation with serum is insignificant or absent at all with the presence of glucose-6-phosphate, fructose-1,6-diphosphate, 3-phosphoglyceric aldehide, 3-phosphoglyceric acid, phosphoenolpyruvic acid, sodium pyruvate. Immunoglobulin isolated from the blood serum of oncologic patients does not affect the activity of purified preparations of hexokinase, glycerinaldehydephosphate dehydrogenase, lactate dehydrogenase under aerobic and anaerobic conditions. When using the air as a gas medium lactate dehydrogenase is activated by immunoglobulin. Lactate dehydrogenase activity under aerobic and anaerobic conditions is essentially lower than in the case when the air serves as a gas medium.  相似文献   

8.
At 9 mM glucose, experimental results show that mitochondrial phosphate depletion (induced by glucose phosphorylation, catalyzed by mitochondrial hexokinase) reduces the activities of the respiratory chain, oxidative phosphorylation, and glutaminase. Consequently, the 14C-lactate oxidation to 14CO2 is lowered in the presence of glucose. The fall of ATP level triggers a high aerobic glycolysis by deinhibiting fructose-6-P kinase. NADH, generated by enhanced glyceraldehyde-3-P dehydrogenase activity, increases the reducing power. Moreover, the lactate dehydrogenase (LDH) system is shifted toward lactate formation, while NAD+ is regenerated and the oligomycin-inhibited ATP production is replaced by the iodoacetate-inhibited ATP production. From 14CO2 production and lactate accumulation it is calculated that about 60% of 14C-glucose which disappears is channelled into extraglycolytic reactions. On the contrary, 82% of glucose below l mM is metabolized through non-glycolytic reactions. The pyruvate kinase-M2 (PK-M2) inhibition does not limit the glycolytic flow from 9 mM glucose, but it may cause sustained gluconeogenesis.  相似文献   

9.
Crystal structures of human hexokinase I reveal identical binding sites for phosphate and the 6-phosphoryl group of glucose 6-phosphate in proximity to Gly87, Ser88, Thr232, and Ser415, a binding site for the pyranose moiety of glucose 6-phosphate in proximity to Asp84, Asp413, and Ser449, and a single salt link involving Arg801 between the N- and C-terminal halves. Purified wild-type and mutant enzymes (Asp84 --> Ala, Gly87 --> Tyr, Ser88 --> Ala, Thr232 --> Ala, Asp413 --> Ala, Ser415 --> Ala, Ser449 --> Ala, and Arg801 --> Ala) were studied by kinetics and circular dichroism spectroscopy. All eight mutant hexokinases have kcat and Km values for substrates similar to those of wild-type hexokinase I. Inhibition of wild-type enzyme by 1,5-anhydroglucitol 6-phosphate is consistent with a high affinity binding site (Ki = 50 microM) and a second, low affinity binding site (Kii = 0.7 mM). The mutations of Asp84, Gly87, and Thr232 listed above eliminate inhibition because of the low affinity site, but none of the eight mutations influence Ki of the high affinity site. Relief of 1,5-anhydroglucitol 6-phosphate inhibition by phosphate for Asp84 --> Ala, Ser88 --> Ala, Ser415 --> Ala, Ser449 --> Ala and Arg801 --> Ala mutant enzymes is substantially less than that of wild-type hexokinase and completely absent in the Gly87 --> Tyr and Thr232 --> Ala mutants. The results support several conclusions. (i) The phosphate regulatory site is at the N-terminal domain as identified in crystal structures. (ii) The glucose 6-phosphate binding site at the N-terminal domain is a low affinity site and not the high affinity site associated with potent product inhibition. (iii) Arg801 participates in the regulatory mechanism of hexokinase I.  相似文献   

10.
The protective effect of fructose with regard to hypoxia-induced cell injury was investigated. The addition of fructose (2 to 20 mmol/L) protected hepatocytes against hypoxia-mediated cell lysis in a concentration-dependent way. The intracellular ATP content was initially decreased as a result of fructose-1-phosphate formation, but it remained constant during the hypoxic incubation. Conversely, high initial ATP values observed at low fructose concentrations progressively declined. Cellular protection was observed only when fructose was added before (and not after) the start of hypoxia. In addition, a sufficient amount of fructose-1-phosphate rapidly accumulated before the induction of hypoxia, and the linear production of lactate, during hypoxic incubation, indicated that cells synthesized ATP continuously. The lack of cell protection by fructose added after the onset of the hypoxia may be explained by a lesser fructose-1-phosphate formation and a subsequently low accumulation leading to insufficient glycolytic ATP production. Under aerobic conditions, both glycolysis (lactate formation) and gluconeogenesis (glucose formation) were carried out in fructose-1-phosphate-loaded cells with the same initial rates, whereas under hypoxic conditions glycolysis was the main metabolic event. The fact that protein synthesis activity recovered faster during reoxygenation of previously hypoxic fructose-treated cells than in glucose-treated cells led us to hypothesize that in situ perfusion of liver with fructose, before its removal, would improve its metabolic capacity during the hypoxic cold preservation and subsequent transplantation.  相似文献   

11.
The permeability of rat liver microsomes to glucose has been studied by using (14)C-labelled D-glucose and a light-scattering technique. 1) The microsomal intravesicular apparent isotope space for D-glucose (1mM; after 5 min incubation at 22 degrees C) was 2.34 microl/mg protein, i.e., approximately 72% of the apparent water space. 2) Efflux of [(14)C]D-glucose from microsomal vesicles pre-loaded as in 1) and measured by rapid Millipore filtration after dilution (100 fold) in a glucose-free medium revealed that 15 sec after dilution only 15% of intravesicular glucose was still retained by microsomes. 3) Osmotic behaviour of microsomes upon addition of D-glucose measured by a light-scattering technique revealed a glucose influx, saturable at [D-glucose] > 100 mM, and (partially) inhibited by pentamidine and cytochalasin B. Ascorbic acid, L-glucose and other monosaccharides and related compounds also permeated liver microsomes in a fashion similar to D-glucose. These data indicate the existence of a facilitative transport system(s) for glucose in the membrane of liver endoplasmic reticulum vesicles.  相似文献   

12.
Red blood cell glucose metabolism was investigated in a male patient with de novo trisomy 10p. According to previous evidence, when assigning hexokinase gene locus in the 10p11 leads to pter region, a triplex dosage effect of hexokinase activity (HK) was found, while all the other erythrocyte glycolytic enzymes were in the normal values range. Red blood cell glucose utilization was 2.87 mumole/hr/ml RBC as compared to 1.43 in normal controls; the rate of glucose metabolized through the hexose monophosphate shunt (HMPS) was unchanged. Glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-diphosphate, and dihydroxyacetone phosphate increased with respect to normal controls, while normal levels of 3-phosphoglycerate, 2-phosphoglycerate, phosphoenolpyruvate, and ATP were found. The HK activity increased in all the red blood cell fractions obtained by density gradient ultracentrifugation. However, a small difference in the distribution of cells through the gradient was evident. The experiments reported in this article show that in the red blood cells of patients with trisomy 10p, an increased level of HK leads to higher concentrations of glucose-6-phosphate and to a faster glucose utilization in the Embden-Meyerhof pathway, while the HMPS rate is unchanged.  相似文献   

13.
During batch growth of Lactococcus lactis subsp. lactis NCDO 2118 on various sugars, the shift from homolactic to mixed-acid metabolism was directly dependent on the sugar consumption rate. This orientation of pyruvate metabolism was related to the flux-controlling activity of glyceraldehyde-3-phosphate dehydrogenase under conditions of high glycolytic flux on glucose due to the NADH/NAD+ ratio. The flux limitation at the level of glyceraldehyde-3-phosphate dehydrogenase led to an increase in the pool concentrations of both glyceraldehyde-3-phosphate and dihydroxyacetone-phosphate and inhibition of pyruvate formate lyase activity. Under such conditions, metabolism was homolactic. Lactose and to a lesser extent galactose supported less rapid growth, with a diminished flux through glycolysis, and a lower NADH/NAD+ ratio. Under such conditions, the major pathway bottleneck was most probably at the level of sugar transport rather than glyceraldehyde-3-phosphate dehydrogenase. Consequently, the pool concentrations of phosphorylated glycolytic intermediates upstream of glyceraldehyde-3-phosphate dehydrogenase decreased. However, the intracellular concentration of fructose-1,6-bisphosphate remained sufficiently high to ensure full activation of lactate dehydrogenase and had no in vivo role in controlling pyruvate metabolism, contrary to the generally accepted opinion. Regulation of pyruvate formate lyase activity by triose phosphates was relaxed, and mixed-acid fermentation occurred (no significant production of lactate on lactose) due mostly to the strong inhibition of lactate dehydrogenase by the in vivo NADH/NAD+ ratio.  相似文献   

14.
In an earlier study, we found that yellow-rumped warblers had in vitro active uptake rates of D-glucose that were only a few percent of the glucose absorption rate achieved at the whole-animal level. Here we used a pharmacokinetic technique to test whether a substantial amount of sugar can be absorbed passively. We used yellow-rumped warblers (Dendroica coronata), known for their seasonal frugivory, freely feeding on a synthetic mash formulated with naturally occurring concentrations of D-glucose. Birds absorbed 89.8% +/- 1.0% (SE) of the D-glucose in the mash. When fed the same mash with trace-labeled 3H L-glucose, the stereoisomer that does not interact with the intestinal Na(+)-glucose cotransporter, 3H appeared in plasma, an indication that this stereoisomer of glucose was absorbed. We used 3H levels in plasma and excreta in a pharmacokinetic model to calculate L-glucose extraction efficiency (i.e., the percent absorbed). Calculated mean extraction efficiency for the passively absorbed L-glucose averaged 91% +/- 23%. Our finding of considerable passive absorption reconciles the in vitro and in vivo results for D-glucose absorption and is in concert with results from five other avian species. The passive pathway appears to provide birds with an absorptive process that can respond quickly to changing luminal concentration and that is energetically inexpensive to maintain and modulate in real time but that may bear a cost. Less discriminate passive absorption might increase vulnerability to toxins and thus constrain foraging behavior and limit the breadth of the dietary niche.  相似文献   

15.
The nanosecond time-resolved fluorescence and fluorescence lifetime quenching have been used to detect the conformational changes of human erythrocyte glucose transporter induced by its ligands. Results show that D-glucose can decrease the fluorescence lifetimes, while L-glucose exhibits no effect. The fluorescence lifetime quenching results also show that in the presence of D-glucose, the quenching efficiency of hypocrellin B (a hydrophobic quencher obtained from a parasitic fungus, growing in Yunnan, China) is lower than in the presence of L-glucose. It can be deduced that the conformational changes of human erythrocyte glucose transporter induced by D-glucose are different from those induced by L-glucose.  相似文献   

16.
D-mannoheptulose, which inhibits hexokinase isoenzymes in a predominantly competitive manner, has been found to decrease much more modestly D-glucose metabolism in pancreatic islets exposed to a low, as distinct from high, concentration of the hexose. In the present study, which aimed at investigating the factor(s) possibly responsible for such a phenomenon, a comparable situation was found to prevail in rat hepatocytes. However, when the hexaacetate ester of D-mannoheptulose was used instead of the unesterified heptose, the relative extent of inhibition of D-[5-3H]glucose utilization and D-[U-14C]glucose conversion to 14C-labelled acidic metabolites was comparable in hepatocytes exposed to either 1.7 or 8.3 mM D-glucose. Moreover, at the low D-glucose level, the incorporation of 3-O-methyl-D-glucose (6.6 mM) into the incubation medium increased the inhibitory action of unesterified D-mannoheptulose upon D-glucose metabolism. These findings suggest that an insufficient uptake of the heptose accounts, in part at least, for its poor efficiency as inhibitor of D-glucose catabolism in liver, and presumably islet cells exposed to low concentrations of the hexose.  相似文献   

17.
The glucose transporter, GLUT 1, was purified from erythrocyte membranes and incorporated into vesicles of erythrocyte lipids. These protein-containing vesicles were studied with differential scanning calorimetry. It was found that the protein underwent an irreversible denaturation at 68.5 +/- 0.2 degreesC (at a scan rate of 0.25 degreesC/min) which was shifted to 72.6 +/- 0.2 degreesC in the presence of 500 mM D-glucose, while 500 mM L-glucose or 10 microM cytochalasin B did not produce a significant shift. The calorimetric enthalpy was found to be 150 kcal/mol, independent of the presence of D-glucose. On a weight basis this value is lower than that for soluble proteins, but it is comparable to values obtained with other integral membrane proteins. The van't Hoff enthalpy is similar to the calorimetric enthalpy, within the experimental error, indicating that the transition is not likely to be cooperative. The activation energy is estimated from both the scan rate dependence of the transition temperature and from the shape of the DSC curve. The presence of 500 mM D-glucose slightly decreases the activation energy. It is concluded that the shift to a higher denaturation transition temperature in the presence of D-glucose is not a result of increased kinetic stability of GLUT 1.  相似文献   

18.
The effects of M16209 (1-(3-bromobenzofuran-2-ylsulfonyl)hydantoin), an antidiabetic agent and aldose reductase inhibitor, on glycolysis were studied in rat and human erythrocytes in vitro. M16209 increased lactate production from glucose when incubated with rat and human erythrocytes, and also increased glucose consumption in rat erythrocytes. The rates of production of lactate in rat erythrocytes treated with M16209 at 10, 25 and 50 microM were 113, 118 and 123%, respectively, of those in vehicle treated cells. Sorbinil (aldose reductase inhibitor), tolbutamide (sulfonylurea), and buformine (biguanide) did not increase lactate production in rat erythrocytes when tested at 50 microM. On the other hand, M16209 did not affect lactate production from D-glyceraldehyde in rat erythrocytes. At 100 microM the agent decreased both glucose-6-phosphate and fructose-6-phosphate in rat erythrocytes, and increased fructose-1,6-bisphosphate; at 10 microM it also increased 6-phosphofructokinase activity in rat hemolysates. These findings suggest that M16209 accelerates glycolysis in erythrocytes via activation of 6-phosphofructokinase.  相似文献   

19.
In the yeast Saccharomyces cerevisiae, trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP), which convert glucose 6-phosphate plus UDP-glucose to trehalose, are part of the trehalose synthase complex. In addition to the TPS1 (previously also called GGS1, CIF1, BYP1, FDP1, GLC6, and TSS1) and TPS2 (also described as HOG2 and PFK3) gene products, this complex also contains a regulatory subunit encoded by TSL1. We have constructed a set of isogenic strains carrying all possible combinations of deletions of these three genes and of TPS3, a homologue of TSL1 identified by systematic sequencing. Deletion of TPS1 totally abolished TPS activity and measurable trehalose, whereas deletion of any of the other genes in most cases reduced both. Similarly, deletion of TPS2 completely abolished TPP activity, and deletion of any of the other genes resulted in a reduction of this activity. Therefore, it appears that all subunits are required for optimal enzymatic activity. Since we observed measurable trehalose in strains lacking all but the TPS1 gene, some phosphatase activity in addition to Tps2 can hydrolyze trehalose 6-phosphate. Deletion of TPS3, in particular in a tsl1Delta background, reduced both TPS and TPP activities and trehalose content. Deletion of TPS2, TSL1, or TPS3 and, in particular, of TSL1 plus TPS3 destabilized the trehalose synthase complex. We conclude that Tps3 is a fourth subunit of the complex with functions partially redundant to those of Tsl1. Among the four genes studied, TPS1 is necessary and sufficient for growth on glucose and fructose. Even when overproduced, none of the other subunits could take over this function of Tps1 despite the homology shared by all four proteins. A portion of Tps1 appears to occur in a form not bound by the complex. Whereas TPS activity in the complex is inhibited by Pi, Pi stimulates the monomeric form of Tps1. We discuss the possible role of differentially regulated Tps1 in a complex-bound or monomeric form in light of the requirement of Tps1 for trehalose production and for growth on glucose and fructose.  相似文献   

20.
Hexokinase I, the pacemaker of glycolysis in brain tissue and red blood cells, is comprised of two similar domains fused into a single polypeptide chain. The C-terminal half of hexokinase I is catalytically active, whereas the N-terminal half is necessary for the relief of product inhibition by phosphate. A crystalline complex of recombinant human hexokinase I with glucose and phosphate (2.8 A resolution) reveals a single binding site for phosphate and glucose at the N-terminal half of the enzyme. Glucose and phosphate stabilize the N-terminal half in a closed conformation. Unexpectedly, glucose binds weakly to the C-terminal half of the enzyme and does not by itself stabilize a closed conformation. Evidently a stable, closed C-terminal half requires either ATP or glucose 6-phosphate along with glucose. The crystal structure here, in conjunction with other studies in crystallography and directed mutation, puts the phosphate regulatory site at the N-terminal half, the site of potent product inhibition at the C-terminal half, and a secondary site for the weak interaction of glucose 6-phosphate at the N-terminal half of the enzyme. The relevance of crystal structures of hexokinase I to the properties of monomeric hexokinase I and oligomers of hexokinase I bound to the surface of mitochondria is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号