首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
通过恒应变速率超塑性拉伸试验,研究了TC21钛合金在变形温度为1 153~1 193K,应变速率为3.3×10-4~3.3×10-2 s-1条件下的拉伸流变应力行为。计算了TC21钛合金超塑性拉伸变形激活能和相应的应力指数,建立了TC21钛合金应力-应变本构模型,并通过1stopt软件对其进行修正。研究表明,在同一应变速率下,TC21钛合金流变应力随变形温度的升高而减小;在同一变形温度下,流变应力随着应变速率的增大而增大。当应变速率较高,变形温度较低时,动态再结晶为主要软化机制;当应变速率较低,变形温度较高时,加工硬化与软化达到动态平衡,软化机制以动态回复为主;当变形温度为1 153K,应变速率为3.3×10-4 s-1时,TC21钛合金具有较好的超塑性(408.60%);超塑性拉伸变形激活能和应力指数分别为329.20kJ/mol、2.367 7。  相似文献   

2.
在Gleeble-3000热模拟试验机上进行等温恒速率热压试验(变形温度800~950℃,应变速率0.001~1.0 s-1),研究了TB8合金的高温塑性变形流变应力变化规律,建立了一个包含应变量的本构方程。结果表明,流变应力随变形温度的升高和应变速率的降低而减小;当ε·≤0.1 s-1时,TB8合金高温热压流变曲线为动态再结晶型流变曲线;热变形激活能Q、材料常数n、α、及ln A均与变形量有关;所建立的本构关系能较好的反应TB8合金高温低应变速率下的流变特征。  相似文献   

3.
使用Gleeble-3800热模拟试验机在850~1050℃、应变速率0.01~10 s~(-1)、变形程度为70%的条件下对铸态TB9钛合金进行热变形行为研究。通过Arrhenius双曲正弦方程和Z参数建立了TB9钛合金热变形的本构方程。结果表明:TB9钛合金流变应力随变形温度升高而降低,随应变速率升高而升高;在本试验条件下,TB9钛合金软化机制主要为动态再结晶,随温度降低动态再结晶现象变得明显;所建立的本构方程与试验值吻合较好,为TB9钛合金有限元模拟及制定锻造工艺提供了理论依据。  相似文献   

4.
马超  王高潮  梁军辉  谢崴 《锻压技术》2013,38(2):118-123
通过高温超塑性拉伸试验,分析高温超塑性拉伸试验设备的拉伸轴向受力和温控误差,找到拉伸轴向力和温控对拉伸试验结果的误差影响,为校正拉伸试验设备和温控系统提供方法。运用最大m值高温超塑性拉伸方法对TB6材料试样进行高温超塑性拉伸试验、处理及分析试验数据,进而对高温超塑性拉伸试验中拉伸轴向力与温控误差所导致的试验数据误差进行修正。  相似文献   

5.
在变形温度600℃800℃、应变速率0.01s-1800℃、应变速率0.01s-10.33s-1条件下进行热态单向拉伸试验,研究Ti-6Al-4V钛合金的变形行为,以及变形性能与变形温度、应变速率之间的关系。结果表明,Ti-6Al-4V钛合金在变形过程中呈现两种变形特征,即稳态形与软化形,且随着变形温度的升高、应变速率的降低,流动应力降低,而延伸率则升高;基于Hooke定律和Grosman方程建立的Ti-6Al-4V钛合金热态成形本构方程,在整个变形区间内可以很好的表征材料的变形行为。  相似文献   

6.
使用Gleeble-3500热模拟试验机在变形温度为800~1000℃、应变速率0.001~10 s~(-1)以及真应变为1.2的条件下对TB17钛合金进行热变形行为研究。根据热压缩数据,分析真应力-真应变曲线,计算TB17钛合金变形激活能,并建立了TB17钛合金应力-应变本构模型,对金相组织进行分析,并进行了本构模型的验证。结果表明,TB17钛合金在热压缩变形过程中,出现动态回复和动态再结晶现象,在低应变速率0.001和0.01 s~(-1)下,以动态再结晶为主要软化机制,在高应变速率1和10 s~(-1)下主要以动态回复为软化机制;流变应力随应变速率的下降和变形温度的升高而降低;峰值应力计算值和实验值的平均误差为6.5%,表明该模型有很高的精确度。研究为TB17钛合金塑性加工过程的模拟和控制提供了参考。  相似文献   

7.
TB6钛合金热变形行为及本构模型研究   总被引:1,自引:0,他引:1  
研究材料的热变形行为及建立其本构模型是进行材料加工与模拟的基础。通过对TB6钛合金热变形行为分析,表明流变应力受应变速率的影响较显著,而变形温度对流变应力的影响程度与应变速率的大小有关。采用Arrhenius型双曲正弦方程建立了TB6钛合金流变应力本构模型。研究变形条件对TB6钛合金流变应力的影响。结果表明,可通过控制应变速率和变形激活能来控制热加工的应力水平和力能参数,为TB6钛合金塑性加工过程控制和模拟提供前提条件。  相似文献   

8.
采用形变诱导法对TB8钛合金进行了超塑性拉伸实验,研究了变形温度、预变形量和中间保温时间对该合金超塑性性能及微观组织演变的影响。结果表明:与恒应变速率法拉伸相比,该方法拉伸后合金的超塑性得到大幅度地提升;变形温度为750℃、预变形量为50%和保温时间为20 min时,该合金的超塑性能最好,伸长率为796.1%。预变形阶段,脱溶析出和再结晶双重优化作用使亚稳态β相转变为细小均匀的再结晶组织,在后续变形过程中,细小弥散的α相既能抑制再结晶晶粒过分长大,又能在一定程度上使再结晶组织发生应变集中而破碎。超塑性变形后合金的微观组织仍然保持较好的等轴状,具有典型的超塑性变形特征。  相似文献   

9.
采用等温热压缩测试和TEM分析研究铝锂合金的流变行为与组织演化规律。结果表明:合金的热塑性变形过程受热激活控制,当变形温度低于410℃时,流变曲线具有明显的峰值应力,曲线由加工硬化、动态软化和稳定阶段3个阶段组成;当变形温度高于410℃后,峰值应力不明显。随应变量的增加,合金组织演化规律为产生大量无规则缠结位错→多边化形成位错墙→分割原始晶粒成若干亚晶→亚晶合并长大并同时经受变形→重复上述过程。应变量的增加导致大量空位产生,刃型位错更易攀移、重组和对消,晶内形成亚晶组织。求解得到合金的材料常数如下:结构因子A为2.787×1016;变形激活能Q为217.397 k J/mol;应力指数n为6.11656;应力水平参数α为0.012568 mm2/N。应变速率和温度对合金流变应力的影响可以用包含Arrhenius等式的Z参数表示。  相似文献   

10.
铸态TB6钛合金热变形行为及本构关系   总被引:1,自引:0,他引:1  
通过等温恒应变速率压缩实验研究铸态TB6钛合金在温度为800~1 100 ℃,应变速率为10-3~1 s-1条件下的热变形行为.结果表明:应变速率对铸态TB6合金流变应力的影响最显著,其次是变形温度,而应变的影响作用最小.在低温高应变速率下,流变应力曲线呈连续软化特征,而在高温低应变速率下,流变应力曲线呈稳态流变特征.铸态TB6合金的热变形激活能为200 kJ/mol,接近纯钛β相的自扩散激活能,表明在实验条件范围内主要发生动态回复过程.在Arrhenius方程基础上考虑了应变对流变应力曲线的影响,建立了能准确描述铸态TB6钛合金流变应力曲线的双曲正弦本构关系.  相似文献   

11.
The effect of stepped tensile deformation at 850, 900, 950 °C on the elongation, microstructure, and mechanical characteristics of titanium alloy has been investigated. The stepped uniaxial tension (stepped-UT) was composed of the following three steps in sequence: constant speed tension, clearance stage, and maximum m superplasticity tension (MaxmSPT). Results showed that the maximum elongation of TC6 alloy between 850 and 950 °C through the Stepped-UT was 2053%, in which the first engineering strain of constant speed tension was 2.0, the following clearance time was 15 min, and the MaxmSPT was finally carried on until failure. And the optimal elongations obtained by the MaxmSPT and constant speed tensile method were 1347 and 753.9% at 850 °C, respectively. The true stress-strain curves showed the strain rate sensitivity index m of the alloy in the stepped-UT was higher than the one in the single step of the MaxmSPT. Moreover, the microstructure of TC6 alloys in the stepped superplastic deformation was observed and the grain refinement was found. The grain refinement and true stress-strain curves of TC6 alloys were all affected by preplanned engineering strain and temperatures. The results also showed the joint action of the dynamic recrystallization and static or meta-dynamic recrystallization refined the grains, improved the structure property, and induced the plasticity enhancement.  相似文献   

12.
TC21新型钛合金的超塑性拉伸行为及组织演化   总被引:4,自引:0,他引:4  
研究了新型高强高韧高损伤容限TC21钛合金的超塑性拉伸变形行为及组织演化规律。结果表明,TC21合金具有良好的超塑性和较宽的超塑性温度-应变速率范围(720℃~960℃,5.5×10~(-5)/s~1.1×10~(-2)/s)。在最佳超塑性条件下(900℃,3.3×10~(-4)/s),平均延伸率达到980%,最高延伸率达到1309%,平均流动应力仅为19.5 MPa。在超塑性拉伸过程中,试样变形区将发生明显的动态再结晶,使原始条状初生α相破断、细化和等轴化,促进超塑性的提高。随着变形温度提高、变形量增大和变形时间加长,将发生聚集再结晶,使再结晶α相合并长大成不规则的大片状,引起显微组织明显粗化,断口表面起伏增加。在最佳超塑性条件下,断口中形成了大而深的空洞,晶界滑动和晶间断裂特征明显。  相似文献   

13.
采用Gleeble-3500热模拟试验机对2024A铝合金进行等温热轧,对其高温流变行为进行了研究。通过试验获得2024A铝合金在温度为300~450℃、应变速率为0.01~10s-1时的真应力-真应变曲线。结果表明,2024A铝合金的流变应力与温度、应变速率和变形量之间呈非线性关系,流变应力随着应变速率增大而升高,随着变形温度的升高而降低。基于试验数据,分别建立考虑应变补偿的Arrhenius和修正的Johnson-Cook(M-JC)本构模型,引入统计学方法对模型精度进行量化评估:Arrhenius模型的平均相对误差和均方根误差分别为5.02%和5.88MPa,M-JC模型的平均相对误差和均方根误差分别为3.72%和5.27MPa,可见M-JC模型预测精度优于Arrhenius模型,说明M-JC模型能更为准确地描述2024A铝合金的高温轧制过程中的流变行为。  相似文献   

14.
通过电子万能试验机对具有粗大晶粒的β型WSTi3515S阻燃钛合金进行了超塑性拉伸试验,分析了热力学参数对超塑性能及力学行为的影响,建立了该合金超塑性本构关系。结果表明:WSTi3515S阻燃钛合金可在较宽的温度范围及应变速率区间内(800~920 ℃,0.000 5~0.01 s-1)实现超塑性;且在高温低应变速率条件下超塑性能良好,最大延伸率可达556%。与细晶超塑性不同,WSTi3515S合金在超塑性拉伸过程中,稳态变形阶段很短甚至不出现,变形主要集中在准稳态变形阶段,且准稳态变形阶段越长,获得延伸率越大。基于Arrhenius方程建立的本构方程精度不高,而由逐步回归法构建的本构方程误差值基本在5%以内。  相似文献   

15.
16.
在温度为750~950℃、应变速率为0.01~10 s-1、变形程度为60%的条件下对TC18钛合金的高温流变应力变化规律进行热模拟实验研究。采用Arrhenius双曲正弦函数推导出TC18本构方程。以热模拟压缩实验为基础建立了真应变0.3、0.5时TC18钛合金热加工图。结果表明:TC18钛合金流变应力随着变形温度升高而降低,随着应变速率的升高而升高;在本实验条件下TC18钛合金表现出动态回复和动态再结晶两种软化机制;Arrhenius双曲正弦函数能够很好地描述TC18钛合金本构方程。热加工图结果表明:在真应变为0.3时存在3个非稳定区域,在应变为0.5时存在2个非稳定区域。结合热加工图,较佳的热加工区间在温度为830~920℃,应变速率为0.01~0.32 s-1区域内。  相似文献   

17.
研究了SPZ钛合金的超塑性变形及其变形前后的显微组织。研究结果表明,大塑性变形后,SPZ合金轧棒组织为利于超塑性的细小均匀的等轴组织。SPZ合金在740℃~800℃之间具有超塑性,在760℃,初始应变速率为1.11×10~(-3)s~(-1)时,合金的最大超塑延伸率可达2149%;应变速率为1.11×10.~(-2)s~(-1)时,超塑延伸率仍可达1380%。超塑性变形后的晶粒尺寸比变形前粗大,变形温度越高,晶粒长大程度越大。变形前合金的晶粒尺寸为0.89μm;应变速率为2.22×10~(-3)s~(-1)时,在740℃,760℃,780℃变形后晶粒尺寸分别为1.51μm,2.33μm,3.21μm。SPZ合金超塑性变形的微观机制足以晶界滑动为主,晶内变形以及位错蠕变起协调作用。合金超塑性变形与类流态的关系还有待深入研究。  相似文献   

18.
采用Gleeble-1500热模拟试验机对4032铝合金在变形温度370~490℃、应变速率0.02~5 s-1的条件下的流变应力进行了研究.分析了变形温度和应变速率对4032铝合金高温塑性变形应力的影响,计算出了激活能和应力指数值.建立了4032铝合金的本构方程.  相似文献   

19.
本文利用Gleeble 3800热模拟试验机和电子背散射衍射(EBSD)技术研究了TB18钛合金在700℃~ 900℃、应变速率0.01~10 s-1时的热变形行为和动态再结晶机制。研究表明该合金的流动应力大小对应变速率和变形温度敏感。变形初期流动应力皆在达到峰值应力后快速软化,随后有不同程度的上升。通过数据回归得到了该合金在两相区和单相区的高温变形Arrhenius型本构方程,其变形激活能分别为340 kJ/mol和185 kJ/mol。其单相区的变形软化机制主要为β相的动态回复,两相区主要为β相的动态再结晶。结合了EBSD技术,金相观察和流变曲线特点的分析表明,在高变形温度,低应变速率时(900℃,0.01s-1)主要以几何动态再结晶(GDRX)为主。在温度较低,或变形速率较高下,变形初期发生不连续动态再结晶(DDRX),应变增大后发生连续动态再结晶(CDRX)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号