共查询到18条相似文献,搜索用时 62 毫秒
1.
在电力市场中,电价预测对市场参与者具有非常重要的意义.该文检验了GM(1,2)灰色模型在现货电价预测中的应用效果.在对GM(1,2)模型进行修正的基础上,分别建立了计及负荷因子的预测模型和计及预测时刻前一小时电价的预测模型,并对模型进行了等维新息处理.对美国PJM电力市场的峰荷时段、腰荷时段和低谷时段的LMP实时电价分别进行了预测.预测结果表明,计及预测时刻前一小时电价的预测模型具有较好的预测效果. 相似文献
2.
在对电力市场现货电价的变动规律综合分析的基础上,提出了一种含预测误差校正的粒子群优化GM(1,2)短期电价预测方法.该方法对采用滑动平均法处理后的电价序列建立基于粒子群优化灰色背景值的GM(1,2)模型,利用时间序列分析的ARMA方法对灰色残差序列建立ARMA预测模型,并用ARMA模型的预测值修正GM(1,2)模型的预测结果.对PJM电力市场历史数据的算例分析表明,相对于传统GM(1,2)模型,该方法能够更加准确地反映电价的变化规律,具有较高的预测精度,可满足电力市场参与者制订竞价策略的需要. 相似文献
3.
4.
基于残差周期修正的灰色电价预测模型 总被引:1,自引:1,他引:1
电力市场中的电价曲线具有多周期、跳跃等特性,而呈指数增长的灰色GM(1,1)模型预测误差较大,为此,文章提出了基于残差周期修正的灰色电价预测模型。该模型不仅利用了灰色模型的优点,而且通过原始数据的平滑处理、初值条件的改进以及残差周期修正使预测曲线波动起来,使拟合曲线更加接近原始数据,大大提高了模型的预测精度。算例结果验证了该方法的可行性。 相似文献
5.
铅酸蓄电池由于其容量大、成本低、自放电率低等优点是应急电源(EPS)系统的基本组成部分,剩余容量作为衡量蓄电池能力指标的重要参数直接影响着系统的安全运行。引入电池的端电压、内阻两个参数作为容量的两个关联因素,建立多因素关联分析的GM(1,N)灰色模型,并对模型进行了改进,针对影响模型预测精度的关键量“均值序列加权参数”提出了一种合理有效的选取方法,最后的预测实例验证以及误差分析表明,该方法具有操作简单、算法复杂度低而且预测精度高的优点,有很强的实际应用价值. 相似文献
6.
7.
通过对咸阳地区分行业用电结构的分析,应用GM(1,1)模型预测了未来咸阳地区的电力需求和最大负荷,咸阳地区电力需求是分阶段的,与国民经济发展呈线性关系的,其发展速度具有一定的周期性. 相似文献
8.
9.
铅酸蓄电池由于其容量大、成本低、自放电率低等优点是应急电源(EPS)系统的基本组成部分,剩余容量作为衡量蓄电池能力指标的重要参数直接影响着系统的安全运行。引入电池的端电压、内阻两个参数作为容量的两个关联因素,建立多因素关联分析的GM(1,N)灰色模型,并对模型进行了改进,针对影响模型预测精度的关键量"均值序列加权参数",提出了一种合理有效的选取方法,最后的预测实例验证以及误差分析表明,该方法具有操作简单、算法复杂度低而且预测精度高的优点,有很强的实际应用价值。 相似文献
10.
基于灰色GM(1,1)及其改进型模型的短期电力负荷预报 总被引:1,自引:0,他引:1
运用ARIMA(p,d,q)模型和灰色理论中的GM(1,1)改进模型组合预测负荷。同时,对气候温度急变日负荷预测值进行特殊处理,提高了负荷预报精度。经对某地区电网的实际编程及运行检验,该模型的预报准确度满足了用户要求。 相似文献
11.
在磁场定向控制的异步电机调速系统中应用灰色预测控制方案的研究 总被引:5,自引:2,他引:3
采用磁场定向控制的交流调速系统可以获得与直流调速系统相媲美的静动态特性。文章将灰色系统理论应用于交流调速系统,应用灰色预测控制进一步改善了磁场定向控制的异步电机调速系统的控制性能,从而为交流调速系统的应用提供了更广阔的前景。 相似文献
12.
基于灰关联加权组合模型的电力负荷预测研究 总被引:6,自引:0,他引:6
针对灰色系统理论中的预测模型(简称GM(1,1)模型)不太适于中长期负荷预测的不足,以及由历史负荷数据的不同时段建模形成预测灰区间的特点,提出了灰关联加权组合修正方法。从历史负荷与其拟合数值的灰关联度挖掘出负荷发展的“远、近”趋势,对灰区间值进行加权组合,大大提高了GM(1,1)模型的预测精度。使用该方法对某一地区未来几年的负荷预测得到了较为理想的结果,说明该方法对中长期负荷预测非常有效,弥补了GM(1,1)模型在该领域内使用的缺陷,具有一定的理论价值和实际应用价值。 相似文献
13.
灰色神经网络模型GNNM(1,1)在城市年用电量预测中的应用 总被引:4,自引:0,他引:4
针对城市电力系统年用电量增长的特点,将灰色神经网络模型GNNM(1,1)引入城市年用电量预测。GNNM(1,1)模型是把灰色方法与神经网络有机结合起来,对复杂的不确定性问题进行求解所建立的模型。该模型通过建立一个BP网络,来映射GM(1,1)模型的灰色微分方程的解。GNNM(1,1)模型采用BP学习算法,网络经训练收敛后就可进行城市年用电量预测。算例计算表明,与灰色预测方法相比,GNNM(1,1)模型具有更强的适应性和更高的预测精度,适用于城市年用电量预测。 相似文献
14.
15.
16.
17.
18.
夏季最大负荷发生时间的预测是电力部门十分关注的问题,它关系到该地区的负荷调整方案以及购电计划制定。北京近年来夏季用电需求增长尤为突出。准确地估计夏季最大负荷发生时间,十分必要且迫切。为此,收集了北京市1990~2002年的夏季最大负荷发生时间数据,发现它是一个波动的、含有灰信息量的序列,故采用灰色系统理论进行预测建模分析。但常规的GM(1,1)模型在适应波动的数据方面,预测精度未能达到要求,故采用GM(1,1)残差周期修正预测模型来解决。经过计算发现,该模型不仅可以提高原始数据的拟合精度,而且用于预测时,与2003年夏季最大负荷发生时间的实际值进行比较,预测偏差也在允许的范围内。 相似文献