首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 69 毫秒
1.
在电力市场中,电价预测对市场参与者具有非常重要的意义.该文检验了GM(1,2)灰色模型在现货电价预测中的应用效果.在对GM(1,2)模型进行修正的基础上,分别建立了计及负荷因子的预测模型和计及预测时刻前一小时电价的预测模型,并对模型进行了等维新息处理.对美国PJM电力市场的峰荷时段、腰荷时段和低谷时段的LMP实时电价分别进行了预测.预测结果表明,计及预测时刻前一小时电价的预测模型具有较好的预测效果.  相似文献   

2.
在对电力市场现货电价的变动规律综合分析的基础上,提出了一种含预测误差校正的粒子群优化GM(1,2)短期电价预测方法.该方法对采用滑动平均法处理后的电价序列建立基于粒子群优化灰色背景值的GM(1,2)模型,利用时间序列分析的ARMA方法对灰色残差序列建立ARMA预测模型,并用ARMA模型的预测值修正GM(1,2)模型的预测结果.对PJM电力市场历史数据的算例分析表明,相对于传统GM(1,2)模型,该方法能够更加准确地反映电价的变化规律,具有较高的预测精度,可满足电力市场参与者制订竞价策略的需要.  相似文献   

3.
根据电力负荷预测中重视负荷成因和区间预测的指导思想,结合传统预测方法的优点,以灰色理论为基础,运用灰色GM(1,N)模型,分别将三个产业的GDP与用电量结合进行预测,并修正模型系数。同时结合二产GDP高、中、低三个水平进行区间预测。结果证明结合影响因素的预测效果较好,预测区间范围合理,可作为中长期负荷预测工具之一。  相似文献   

4.
基于残差周期修正的灰色电价预测模型   总被引:1,自引:1,他引:1  
吴兴华  周晖 《电网技术》2008,32(8):68-71
电力市场中的电价曲线具有多周期、跳跃等特性,而呈指数增长的灰色GM(1,1)模型预测误差较大,为此,文章提出了基于残差周期修正的灰色电价预测模型。该模型不仅利用了灰色模型的优点,而且通过原始数据的平滑处理、初值条件的改进以及残差周期修正使预测曲线波动起来,使拟合曲线更加接近原始数据,大大提高了模型的预测精度。算例结果验证了该方法的可行性。  相似文献   

5.
铅酸蓄电池由于其容量大、成本低、自放电率低等优点是应急电源(EPS)系统的基本组成部分,剩余容量作为衡量蓄电池能力指标的重要参数直接影响着系统的安全运行。引入电池的端电压、内阻两个参数作为容量的两个关联因素,建立多因素关联分析的GM(1,N)灰色模型,并对模型进行了改进,针对影响模型预测精度的关键量“均值序列加权参数”提出了一种合理有效的选取方法,最后的预测实例验证以及误差分析表明,该方法具有操作简单、算法复杂度低而且预测精度高的优点,有很强的实际应用价值.  相似文献   

6.
采用GM (1 ,1 )改进模型与ARIMA(p ,d ,q)模型对广西自治区电网特殊日电力负荷进行组合预测 ,阐述了GM (1 ,1 )改进模型的建立方法 ,提出了适用于广西自治区电网特殊日电力负荷预测的预测数据处理方法 ,提高预测的精确度 ,全年日精确度优于 95% .解决了在日采样点为 2 4点 (正点采样 )情况下预测确度较低的问题 .  相似文献   

7.
杨大渭 《陕西电力》2002,30(1):18-21
通过对咸阳地区分行业用电结构的分析,应用GM(1,1)模型预测了未来咸阳地区的电力需求和最大负荷,咸阳地区电力需求是分阶段的,与国民经济发展呈线性关系的,其发展速度具有一定的周期性.  相似文献   

8.
为解决传统灰色预测方法仅适合单一变量的问题,在传统GM(1,1)模型的基础上建立了含几个变量的GM(1,n)模型,改进传统模型中某个参数的赋值方法,重新建立改进灰色预测模型,将改进的GM(1,n)模型应用于电力负荷预测中.以某城市2013-2019年的电网负荷研究为例,利用GM(1,n)模型与改进GM(1,n)模型分别...  相似文献   

9.
铅酸蓄电池由于其容量大、成本低、自放电率低等优点是应急电源(EPS)系统的基本组成部分,剩余容量作为衡量蓄电池能力指标的重要参数直接影响着系统的安全运行。引入电池的端电压、内阻两个参数作为容量的两个关联因素,建立多因素关联分析的GM(1,N)灰色模型,并对模型进行了改进,针对影响模型预测精度的关键量"均值序列加权参数",提出了一种合理有效的选取方法,最后的预测实例验证以及误差分析表明,该方法具有操作简单、算法复杂度低而且预测精度高的优点,有很强的实际应用价值。  相似文献   

10.
基于灰色GM(1,1)及其改进型模型的短期电力负荷预报   总被引:1,自引:0,他引:1  
运用ARIMA(p,d,q)模型和灰色理论中的GM(1,1)改进模型组合预测负荷。同时,对气候温度急变日负荷预测值进行特殊处理,提高了负荷预报精度。经对某地区电网的实际编程及运行检验,该模型的预报准确度满足了用户要求。  相似文献   

11.
灰参数GM(1,1)模型及其在电力负荷预测中的应用   总被引:6,自引:0,他引:6  
传统的GM(1,1)模型在参数a的绝对值较小的情况下近期负荷预测精度较高,远期负荷预测往往误差较大,这一定程度上是由于参数a在整个预测过程中保持不变而造成的。本文将参数a看作是具有灰色特性的灰参数,提出了灰参数GM(1,1)模型,并将该模型运用于中长期电力负荷预测的实例中,取得了较好的结果。  相似文献   

12.
灰色神经网络模型GNNM(1,1)在城市年用电量预测中的应用   总被引:4,自引:0,他引:4  
针对城市电力系统年用电量增长的特点,将灰色神经网络模型GNNM(1,1)引入城市年用电量预测。GNNM(1,1)模型是把灰色方法与神经网络有机结合起来,对复杂的不确定性问题进行求解所建立的模型。该模型通过建立一个BP网络,来映射GM(1,1)模型的灰色微分方程的解。GNNM(1,1)模型采用BP学习算法,网络经训练收敛后就可进行城市年用电量预测。算例计算表明,与灰色预测方法相比,GNNM(1,1)模型具有更强的适应性和更高的预测精度,适用于城市年用电量预测。  相似文献   

13.
为克服传统GM(1,1)模型中利用最小二乘法估计参数存在的不足,改善GM(1,1)模型在有突变情况下的中长期负荷预测中的精度,提出了利用最小一乘法估计GM(1,1)模型参数的方法。在GM(1,1)建模过程中,以误差绝对值之和最小为优化目标,针对目标函数不可导的特点,利用线性规划对模型的参数进行估计。对某中长期负荷进行预测,并与传统的GM(1,1)模型进行对比分析。结果表明,所提方法预测精度更高。该方法发挥了最小一乘法受奇异值影响小,稳健性好的优点,避免了利用最小二乘法估计GM(1,1)模型参数存在的不足,是有突变情况下的中长期负荷预测的有效方法。  相似文献   

14.
针对非模型PID控制难以克服参数变化、时滞的固有缺陷,为优化托卡马克装置中应对等离子体垂直不稳定位移的主动反馈控制,通过改进灰色GM(1,1)预测模型对基于级联H桥拓扑的EAST快控电源的输出电流进行准确预测以优化控制参数.灰色GM(1,1)预测模型适用于小样本、贫信息系统,所需建模样本少、计算简易.预测拟合序列的差异...  相似文献   

15.
电力市场现货电价预测方法研究状况综述   总被引:3,自引:0,他引:3       下载免费PDF全文
电力工业从垄断走向市场,使得电价不再由政府确定,而是在市场机制下产生。电价波动会影响市场参与者的经济利益。时电力市场参与者而言,准确地预测电价具有非常重要的意义。详细分析和研究了电力市场现货电价的预测方法及其技术发展,阐述了各种电价预测方法的种类、预测原理、优缺点及其适用范围。  相似文献   

16.
中长期电价的预测无论是对于市场监管政策的制定,还是对于大用户和发电商的投资规划,都具有极其重要的意义。影响中长期电价的因素比较复杂,历史电价数据分布混乱增加了一般回归电价预测建模的难度。提出了一种基于最小最大概率回归方法的电力市场中期电价预测的新模型。在分析最小最大概率机(MPM)及其用于回归原理的基础上,使用最小最大概率回归(MPMR)方法对不同的训练样本集进行训练,并计算出预测期的预测值,取得了比较好的预测结果。训练样本的分割使中期电价预测模型更加准确。美国加州现货电能量市场的实例数据验证了所建模型及方法的有效性。  相似文献   

17.
基于改进DFNN的短期电价预测新方法   总被引:3,自引:0,他引:3       下载免费PDF全文
提出了一种改进的动态模糊神经网络DFNN(Dynam ic Fuzzy Neural Network)的短期电价预测方法。首先对采集到的信息进行特征提取,然后利用模糊粗糙集理论中的信息熵进行属性简化、去掉冗余信息,最后用得到的属性作为动态模糊神经网络(DFNN)的输入进行训练预测。在模糊神经网络内部引入递归环节,构成了动态模糊神经网络,并采用具有全局寻优能力的遗传算法来训练网络,克服了单纯BP算法易陷入局部最优解的困境。最后以美国加州电力市场公布的2000年数据进行了模型训练和预测,结果表明该方法所建立的预测模型具有较高的预测精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号