首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于Eyring本构模型的磁流变液阻尼器设计原理与试验研究   总被引:2,自引:0,他引:2  
根据试验得出的Bingham塑性流体模型的模型参数, 建立了磁流变液切应力的误差函数,利用多参数优化理论和数据拟合方法对Eyring本构模型的参数进行辨识。建立了基于Eyring模型的环状混合准稳态流动方程,得出了磁流变液在环形通道中流动的速度分布函数。在给定活塞速度和环形通道的几何尺寸条件下,对混合工作模式的汽车磁流变液阻尼器产生的阻尼力进行理论预测研究。按照长安之星微型汽车前悬架的技术要求,设计和制作了微型汽车磁流变液阻尼器,并对此进行了试验测试,试验结果表明:应用所提出的理论分析方法预测磁流变液阻尼器的特性是可行的。  相似文献   

2.
汽车磁流变减振器设计原理与实验测试   总被引:21,自引:1,他引:21  
根据磁流变体的滨汉塑性模型描述,提出了混合工作模式的汽车磁流变减振器的设计原理,按照长安微型汽车的技术和磁流变体的性能设计和制作了微型汽车磁流变减振器,并根据长安微型汽车前悬架减振器的技术条件对此进行了实验测试。实验结果表明,提出的设计原理是可行的,对设计特殊阻尼特性的磁流变减振器有一定的指导意义。  相似文献   

3.
针对双腔油气式减震器无法根据外部环境激励的改变而调节自身阻尼特性变化的问题,基于磁流变原理,设计了一种适用于飞机起落架系统的双腔油气式磁流变减震器。为提升该减震器的减震性能,增加可控阻尼力初始值及其变化范围;在现行双腔油气式减震器的基础上优化了内部结构参数;采用孔缝结合的方式对双腔油气式磁流变减震器阻尼通道进行了重新设计;依据阻尼通道形式完善了磁路设计与优化;利用有限元方法分析了内部磁场特性;并对比分析了不同阻尼通道形式下的最大输出阻尼力与可控阻尼范围。结果表明:优化后的节流通道处磁感应强度分布更为均匀,孔缝结合的阻尼通道形式实现了较大初始阻尼力的输出,增加了可变阻尼力调节范围。  相似文献   

4.
基于混合模式的汽车磁流变减振器阻尼特性分析与测试   总被引:12,自引:1,他引:12  
根据牛顿流体模型和滨汉塑性流体模型 ,分别对混合工作模式的汽车磁流变减振器进行了理论分析研究。按照长安微型汽车的技术要求 ,设计和制作了汽车磁流变减振器 ,并对此进行了试验测试。试验结果表明 ,应用所提出的理论分析模型是可行的 ,对设计特殊阻尼特性的磁流变减振器有一定的指导意义。  相似文献   

5.
In this study, a new mathematical dynamic model of displacement sensitive shock absorber (DSSA) is proposed to predict the dynamic characteristics of automotive shock absorber The performance of shock absorber is directly related to the vehicle behaviors and performance, both for handling and ride comfort The proposed model of the DSSA has two modes of damping foice (i e soft and hard) according to the position of piston In this paper, the performance of the DSSA is analyzed by considering the transient zone for more exact dynamic characteristics For the mathematical modeling of DSSA, flow continuity equations at the compression and rebound chamber are formulated And the flow equations at the compression and rebound stroke are formulated, respectively. Also, the flow analysis at the reservoir chamber is carried out Accordingly, the damping force of the shock absorber is determined by the forces acting on the both side of piston The analytic result of damping force characteristics are compared with the experimental results to prove the effectiveness Especially, the effects of displacement sensitive orifice area and the effects of displacement sensitive orifice length on the damping force are observed, respectively The results reported herein will provide a better understanding of the shock absorber  相似文献   

6.
为降低汽车磁流变悬架系统中传感器成本,提高系统可靠性,提出了一种具有非对称力学特性的汽车磁流变减振器结构设计方案及分级控制方法。根据结构设计方案,对其力学输出特性进行了理论分析,并进行了样机加工与试验测试。为分析分级控制算法在相应半主动悬架中的控制效果,建立了1/4车辆悬架动力学模型,进行了动力学仿真分析。研究结果表明,所设计的磁流变减振器具有连续输出非对称阻尼力的工作特性,验证了设计思路和方法的有效性;采用分级控制算法的半主动悬架在适应道路条件的变化方面比被动控制下的悬架具有更大的优越性;虽然分级控制的控制效果在部分路面下没有天棚控制的控制效果好,但基于分级控制的减振控制系统可以节约成本并提高可靠性,具有较好的应用前景。  相似文献   

7.
汽车阻尼可调减振器比较分析   总被引:2,自引:0,他引:2  
阐述了减振器的作用和工作原理,比较分析了电、磁流变液减振器、机械调节阻尼可调减振器、电机控制阻尼可调减振器、电磁阀控制阻尼可调减振器与干摩擦式阻尼可调减振器的结构与特点,展望了减振器技术的发展前景。  相似文献   

8.
电流变液体是指在电场作用下其流变性质能迅速发生变化的一类流体,基于这一原理我们分析了电流变流体的力学性能,针对电流变减振器的结构,论述了该电流变减振器模型的工作原理,建立电流变减振器阻尼特性计算的数学模型并进行仿真分析,对构成阻尼力特性影响的主要参数进行了研究。研究表明:电流变液体减振器的机械结构对充分体现电流变效应的功能,实现振动的有效控制起着重要作用。  相似文献   

9.
A new kind of shock absorber with Coulomb–fluid damping through coupling oil, wire gauze, rubber and spring by ingenious tactics is designed for reinforcement of electronic-information equipment in atrocious vibration and impact. The physical mechanism of the shock absorber is systematically investigated. The key-model machine shows complex non-linear dynamic characteristics in multi-parameter coupling dynamic test; otherwise, it has a good dynamic performance for attenuating vibration and resisting violent impact. Based on this, the non-linear dynamic model for attenuating vibration mode of the shock absorber is presented by analysing coupling physical mechanism of fluid and Coulomb friction and other factors for designing the shock absorber with high validity. The analytical results obtained in experimental data have been compared with the numerical ones obtained by performing the Runge–Kutta method with the mathematical model. As the model results agree well with the test data, it can be used for engineering design.  相似文献   

10.
冲击载荷作用下磁流变阻尼器的建模与分析   总被引:2,自引:1,他引:2  
以某12.7 mm机枪的磁流变(MR)后坐阻尼器为研究对象,基于Herschel-Bulkley本构模型,建立了该MR后坐阻尼器的轴对称一维层流模型。运用ANSYS软件,对该阻尼器的MR阀进行了磁场有限元分析,求得了环状间隙间MR流体的磁通密度。将MR流体流动模型和MR阀有限元结果相结合,建立了不同磁场作用下阻尼力随活塞速度的变化规律,利用这些规律对该阻尼器的落锤撞击试验和实弹射击试验进行了数值仿真。理论与试验结果的对比指出,在低磁场作用的情况下,理论与试验结果具有较好的一致性。  相似文献   

11.
磁流体阻尼可调减振器   总被引:11,自引:1,他引:11  
磁流体减振器作为一种阻尼力可调减振器,具有反应时间迅速,能适用于振动系统实时控制等特点。在分析了磁流体减振器阻尼力特性的基础上,提出了磁流体减振器的非线性模型;试验验证了磁流体减振器作为阻尼可调减振器的减振性能。结果表明提出的非线性模型更能反映磁流体减振器的阻尼力特性;磁流体减振器能满足振动系统的不同阻尼的要求。  相似文献   

12.
针对油液泄漏导致的减振器失效问题,以某国产液压减振器为研究对象,通过分析其结构以及工作原理,建立减振器阻尼力的数学表达式以及AMESim一维仿真模型,仿真得到其不同速度下的示功图以及阻尼特性曲线,并与试验结果进行对比,仿真结果与试验结果能够较好的吻合,表明用AMESim所建立的一维仿真模型真实可靠。基于该仿真模型仿真活塞缝隙、底阀、活塞杆与密封圈缝隙的油液泄漏而导致的减振器失效问题,对比不同状态下的阻尼特性曲线,发现仿真模型可以较好的进行减振器失效的仿真分析,表明仿真模型能够指导实际工程设计以及相关的性能预测。  相似文献   

13.
应用B ingham模型来描述磁流变液的本构方程,在理论上分析了盘式磁流变液风扇离合器的调速机理;建立了离合器传递转矩与输出转速的计算模型,并导出了设计计算公式;讨论了动态响应特性、功率损失特性、传递的转矩及调速范围与离合器结构参数等因素的关系。结果表明:影响离合器动态品质的主要因素为其结构参数,减小从动盘的转动惯量可以改善系统的动态特性;离合器的调速范围主要由工作间隙和磁流变液零场粘度决定,减小磁流变液零场粘度和适当增大工作间隙可以减小粘性功率损失,提高效率。  相似文献   

14.
为解决"在设计阶段就能预测减振器的阻尼特性"的问题,基于Easy5软件建立减振器的数学模型并进行仿真研究。其中该模型的建立是基于对双筒液力减振器的结构和工作原理的分析,使用能描述减振器内部结构的基本参数,同时用小挠度理论对其核心元件环形节流阀片的变形进行求解。计算结果与试验结果符合较好,该模型可进一步应用于研究液力减振器的动态阻尼特性对整车动力学性能的影响。  相似文献   

15.
将电流变液作为一种可控阻尼介质应用于起落减振器,实现对减振器的主动阻尼控制,减缓飞机降落时的高速冲击。采用理想的飞机减振器模型,建立动力学阻尼控制的数学方程,通过数值计算获得阻尼参数的控制规律以及电流变液电场强度的变化规律,得到了满意的减振器冲击能量减振效果。  相似文献   

16.
液压减振器是通过消耗机械能实现减振目的的装置,但目前其散热效果并不理想,温度升高导致了减振器整体性能下降。利用路面不平度激励模型、悬架系统振动模型、热量传递模型,通过能量守恒定律建立了液压减振器的热力学平衡数学模型。综合考虑油液泄漏特性、密封特性以及液压减振器阻尼性能界定其许用油温。对液压减振器散热参数进行了分析研究,且试验结果表明分析模型与设计方法正确,为减振器的设计提供参考。  相似文献   

17.
介绍了抗蛇行减振器的简化模型——Maxwell模型。基于蛇形运动的稳定性理论,推导了带抗蛇行减振器的刚性转向架的线性临界速度解析表达式。利用表达式研究了不同等效锥度下抗蛇行减振器串联刚度和结构阻尼对临界速度的影响。研究结果表明:在相同锥度下,结构阻尼和串联刚度存在最佳匹配关系,小结构阻尼应配合小串联刚度,较大结构阻尼应配合较大串联刚度,大结构阻尼应配合大串联刚度;在满足结构阻尼和串联刚度匹配的大范围下,不同等效锥度应匹配不同的串联刚度和结构阻尼,小锥度应匹配较小的串联刚度和较大的结构阻尼,大锥度应匹配较大的串联刚度和较小的结构阻尼。  相似文献   

18.
In this study, a new mathematical dynamic model of shock absorber is proposed to predict the dynamic characteristics of an automotive system. The performance of shock absorber is directly related to the car behaviours and performance, both for handling and ride comfort. Damping characteristics of automotive can be analysed by considering the performance of displacement-sensitive shock absorber (DSSA) for the ride comfort. The proposed model of the DSSA is considered as two modes of damping force (i.e. soft and hard) according to the position of piston. For the simulation validation of vehicle-dynamic characteristics, the DSSA is mathematically modelled by considering the fluid flow in chamber and valve in accordance with the hard, transient and soft zone. And the vehicle dynamic characteristic of the DSSA is analysed using quarter car model. To show the effectiveness of the proposed damper, the analysed results of damping characteristics were compared with the experimental results, which showed similar behaviour with the corresponding experimental one. The simulation results of frequency response are compared with the ones of passive shock absorber. From the simulation results of the DSSA, it can be concluded that the ride comfort of the DSSA increased at the low-amplitude road condition and the driving safety was increased partially at the high-amplitude road condition. The results reported herein will provide a better understanding of the shock absorber. Moreover, it is believed that those properties of the results can be utilised in the dynamic design of the automotive system.  相似文献   

19.
针对车辆减振器油液内泄漏问题,对其内部油液微小内泄漏开展仿真与试验分析。通过数学模型对活塞与缸筒环形缝隙中流体进行理论受力分析,运用Autodesk Inventor软件建立减振器内部环形间隙流体几何模型,利用CFD仿真技术对环形间隙流体三维模型开展仿真分析,通过改变流场速度、压力、湍流动能及温度参数,分析得到影响减振器油液微小内泄漏的主要影响因素;采用伺服示功机对不同活塞速度和环形间隙下的油液内泄漏进行试验测试。结果表明:活塞静止时,节流口速度、压力、湍流动能的变化对环形间隙油液内泄漏影响较大,温度变化影响较小;活塞运动时,泄漏量随活塞速度、活塞与缸筒之间的间隙的增大而增大,因此在加工精度允许条件下,可通过减少活塞与缸筒间的间隙来减小泄漏量。  相似文献   

20.
磁流变离合器是通过磁流变液的剪切应力传递转矩的器件.介绍了一种园盘式磁流变离合器的工作原理,用Bingham 模型描述了磁流变液随外加磁场变化的流变特性,基于Navior-Stokes方程,分析了磁流变液在两圆盘间的流动,得到了离合器传递的转矩和输出角速度的方程,为离合器的设计奠定了理论基础.研究结果表明:离合器传递的转矩和输出角速度可由外加磁场连续控制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号