首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Realization of STEP-NC enabled machining   总被引:5,自引:0,他引:5  
X.W. Xu   《Robotics and Computer》2006,22(2):144-153
A STEP-compliant CNC machine tool that demonstrated a G-code free machining scenario is presented. The aim of this research is to showcase the advantages of, and evaluate, STEP-NC—a new NC data model—by implementing it in a legacy CNC system. The work consists of two parts: retrofitting an existing CNC machine and the development of a STEP-compliant NC Converter called STEPcNC. The CompuCam's motion control system is used for retrofitting the machine, which is programmable using its own motion control language—6K Motion Control language and capable of interfacing with other CAPP/CAM programs through languages such as Visual Basic, Visual C++ and Delphi. STEPcNC can understand and process STEP-NC codes, and interface with the CNC controller through a Human Machine Interface. It makes use of STEP-NC information such as “Workplan”, “Workingstep”, machining strategy, machining features and cutting tools that is present in a STEP-NC file. Hence, the system is truly feature-based. The Application Interpreted Model of STEP-NC has been used.  相似文献   

2.
This paper deals with a human-assisted knowledge extraction method to extract “if…then…” rules from a small set of machining data. The presented method utilizes both probabilistic reasoning and fuzzy logical reasoning to benefit from the machining data and from the judgment and preference of a machinist. Using the extracted rules, one can determine the values of operational parameters (feed, cutting velocity, etc.) to ensure the desired machining performance (keep surface roughness within the stipulated range (e.g., moderate)). Applying the presented method in a real-life machining knowledge extraction situation and comparing it with the inductive learning based knowledge extraction method (i.e., ID3), the usefulness of the method is demonstrated. As the concept of manufacturing automation is shifting toward “how to support humans by computers”, the presented method provides some valuable hints to the developers of futuristic computer integrated manufacturing systems.  相似文献   

3.
Recently, the application of high-speed machining (HSM) is recognized as an economically viable manufacturing technology. Even though more HSM centers have increasingly been utilized, the conventional toolpath generation methods are usually employed in practice. But the conventional methods have inherent limitations for the HSM application.This paper presents a new toolpath generation algorithm for high-speed finish cutting process. In order to minimize the fluctuation of cutting load and the possibility of chipping on the cutting edge in HSM, a spiral topology toolpath that is to cut continuously with the minimum number of cutter retractions during the cutting operations is developed. This algorithm begins with the contour offset procedure along the boundary curve of the sculptured surface being machined. In the offset procedure, the offset distance is determined such that the scallop height maintains a constant roughness to ensure higher levels of efficiency and quality in high-speed finish machining. Then, the spiral path is generated as a kind of the diagonal curve between the offset curves. This path strategy is able to connect to a neighbor path without a cutter retraction. Therefore, the minimum tool retraction toolpath can be generated. And, it allows the sculptured surface incorporating both steeper and flatter areas to be high-speed machined. Based on these techniques, experimental results are given to verify the proposed approach.  相似文献   

4.
Kinematics of a particular five-axis milling machine can drastically change the machining accuracy. Therefore, the reduction of the kinematics error is an important problem associated with the tool path planning.Our new optimization method employs a closed form of the kinematics error represented as a function of the positions of the cutter contact points. The closed form is derived from the inverse kinematics associated with a particular five-axis machine and obtained through automatic symbolic calculations.The second component of the algorithm is the optimal setup of the part surface on the mounting table employed in an iterative loop with the generation of the cutter contact points.For a prescribed tolerance the proposed optimization allows for substantial reduction in the number of required cutter contact points. The reduction can be significant and may amount to long hours of machining if the machining time at the programmed feed is less than the sampling time of the controller.In turn, when the number of cutter location points is fixed, the error can be substantially reduced. However, this refers to commanded error wherein the dynamics of machine tool are not taken into account.We present an analysis, systematic numerical experiments and results of real cutting (ball nose and flat-end cutters) as an evidence of the efficiency and the accuracy increase produced by the proposed method. We also evaluate the relative contributions of the setup and the point optimization.The method is shown to work with advanced tool path generation techniques proposed earlier such as the adaptive space filling curves.The numerical and machining experiments demonstrate that the proposed procedure outperforms tool paths based on the equi-arclength principle and paths generated by MasterCam 9.  相似文献   

5.
Cutter engagement is a measure that describes what portion of the cutter is involved in machining at a given instant of time. During profile milling of complex geometries, cutter engagement varies significantly along the cutter path. Cutter engagement information helps in determining the efficiency of the cutter path and also helps in improving it by adjusting the feed rate. This paper describes geometric algorithms for computing piece-wise continuous closed-form cutter engagement functions for 2.5D milling operations. The results produced by our algorithm are compared with the results obtained by discrete simulations of the cutting process and appear to match very well.  相似文献   

6.
Conventional NC machine tools do not generally allow the change of cutting conditions such as depth of cut and stepover during machining operations, once they are given machining commands as NC programs. For that reason, the NC programs must be prepared adequately and verified in advance, which requires extensive time and effort. It is therefore necessary to develop functions to generate the cutter path autonomously and control the cutting conditions adaptively during machining to optimize the cutting process, maintain stable cutting, and avoid cutting trouble. This paper proposes a new architecture to realize autonomous control of the cutting process without using NC programs. A technique called digital copy milling is developed to control the NC machine tool in real time. The digital copy milling system can generate tool paths in real time, based on the principle of copy milling. In addition, a new control strategy is developed to control the cutting conditions adaptively. A prototype of an autonomous controller was implemented in a three-axis control machining center. Thereafter, experimental milling tests were carried out to verify the effectiveness of the proposed system. The cutter paths were generated autonomously by the digital copy milling system. Results show that the cutting depth and stepover can be changed during milling tests. Cutting conditions were controlled adaptively.  相似文献   

7.
8.
Real-time control of drilling was carried out by measuring the thrust force and determining its gradient. Using a microcomputer-based feedback control system, experiments were carried out under different cutting conditions to test the effectiveness of the thrust force gradient in predicting failure. The system was able to predict failure due to excessive wear commonly encountered with 5 and 8 mm drills. With such drills, excessive weat at the outer corner led to an increase in the local temperature which in turn increased the wear. This led to very high temperatures (>600°C), causing local welding of the drill material to the peripheral surface of the hole being drilled. Furthermore, the high temperatures reduced the compressive yield strength of the drill material, causing sub-surface fracture to occur under the influence of the cutting loads. This cyclic phenomenon of “seizure” due to local welding and “release” due to shear fracture (i.e. “stick-slip”) caused sharp fluctuations in the thrust force under constant feed.

This paper discusses the effectiveness of the control system described above in predicting failure due to the excessive wear common to large drills. This system is also contrasted with another based on vibration measurements which has been successfully used to predict failure due to fracture common with small drills. This paper also presents other experimental sensor schemes in the literature. Finally, this paper proposes a framework for an “intelligent” machining process control system driven by multiple sensors, which would facilitate untended machining.  相似文献   


9.
This work proposes a process planning for machining of a Floor which is the most prominent elemental machining feature in a 2½D pocket. Traditionally, the process planning of 2½D pocket machining is posed as stand-alone problem involving either tool selection, tool path generation or machining parameter selection, resulting in sub-optimal plans. For this reason, the tool path generation and feed selection is proposed to be integrated with an objective of minimizing machining time under realistic cutting force constraints for given pocket geometry and cutting tool. A morphed spiral tool path consisting of G1 continuous biarc and arc spline is proposed as a possible tool path generation strategy with the capability of handling islands in pocket geometry. Proposed tool path enables a constant feed rate and consistent cutting force during machining in typical commercial CNC machine tool. The constant feed selection is based on the tool path and cutting tool geometries as well as dynamic characteristics of mechanical structure of the machine tool to ensure optimal machining performance. The proposed tool path strategy is compared with those generated by commercial CAM software. The calculated tool path length and measured dry machining time show considerable advantage of the proposed tool path. For optimal machining parameter selection, the feed per tooth is iteratively optimized with a pre-calibrated cutting force model, under a cutting force constraint to avoid tool rupture. The optimization result shows around 32% and 40% potential improvement in productivity with one and two feed rate strategies respectively.  相似文献   

10.
This study is concerned with the integrated system of a robot and a machine tool. The major task of robot is loading the workpiece to the machine tool for contour cutting. An iterative learning control (ILC) algorithm is proposed to improve the accuracy of the finished product. The proposed ILC is to modify the input command of the next machining cycle for both robot and machine tool to iteratively enhance the output accuracy of the robot and machine tool. The modified command is computed based on the current tracking/contour error. For the ILC of the robot, tracking error is considered as the control objective to reduce the tracking error of motion path, in particular, the error at the endpoint. Meanwhile, for the ILC of the machine tool, contour error is considered as the control objective to improve the contouring accuracy, which determines the quality of machining. In view of the complicated contour error model, the equivalent contour error instead of the actual contour error is taken as the control objective in this study. One challenge for the integrated system is that there exists an initial state error for the machine tool dynamics, violating the basic assumption of ILC. It will be shown in this study that the effects of initial state error can be significantly reduced by the ILC of the robot. The proposed ILC algorithm is verified experimentally on an integrated system of commercial robot and machine tool. The experimental results show that the proposed ILC can achieve more than 90% of reduction on both the RMS tracking error of the robot and the RMS contour error of the machine tool within six learning iterations. The results clearly validate the effectiveness of the proposed ILC for the integrated system.  相似文献   

11.
This work proposes a process planning for machining of a Floor which is the most prominent elemental machining feature in a 2½D pocket. Traditionally, the process planning of 2½D pocket machining is posed as stand-alone problem involving either tool selection, tool path generation or machining parameter selection, resulting in sub-optimal plans. For this reason, the tool path generation and feed selection is proposed to be integrated with an objective of minimizing machining time under realistic cutting force constraints for given pocket geometry and cutting tool. A morphed spiral tool path consisting of G1 continuous biarc and arc spline is proposed as a possible tool path generation strategy with the capability of handling islands in pocket geometry. Proposed tool path enables a constant feed rate and consistent cutting force during machining in typical commercial CNC machine tool. The constant feed selection is based on the tool path and cutting tool geometries as well as dynamic characteristics of mechanical structure of the machine tool to ensure optimal machining performance. The proposed tool path strategy is compared with those generated by commercial CAM software. The calculated tool path length and measured dry machining time show considerable advantage of the proposed tool path. For optimal machining parameter selection, the feed per tooth is iteratively optimized with a pre-calibrated cutting force model, under a cutting force constraint to avoid tool rupture. The optimization result shows around 32% and 40% potential improvement in productivity with one and two feed rate strategies respectively.  相似文献   

12.
The path of the cutter in a face milling operation is a critical parameter that governs the total production time. Computer Aided Design (CAD) systems allow for the careful planning of the cutter path without physical verfication. Optimization of cutter path for generic shapes is still an unsolved problem. Moreover, while planning the path of the cutter analytically, many real time process effects get neglected. Of chief mention is a variable that affects the non-machining time, Viz., tool life. Often the optimal path is insignificant in the light of the damage the tool will suffer if it follows this path.

Tool life in face milling depends on the entrance and exit conditions of the cutter into the workpiece (among other variables). Using the actual (trochoidal) path of the cutter tip (compared to the commonly used circular path) allows for a better evaluation of cutter entances and exits. In this research, an attempt is made to point out the importance of “process effects” in NC verification. Further, a program is developed to study the above mentioned variables in relation to the tool path. Preliminary testing of this program proved the validity of the proposal.  相似文献   


13.
This paper presents a machining potential field (MPF) method to generate tool paths for multi-axis sculptured surface machining. A machining potential field is constructed by considering both the part geometry and the cutter geometry to represent the machining-oriented information on the part surface for machining planning. The largest feasible machining strip width and the optimal cutting direction at a surface point can be found on the constructed machining potential field. The tool paths can be generated by following the optimal cutting direction. Compared to the traditional iso-parametric and iso-planar path generation methods, the generated MPF multi-axis tool paths can achieve better surface finish with shorter machining time. Feasible cutter sizes and cutter orientations can also be determined by using the MPF method. The developed techniques can be used to automate the multi-axis tool path generation and to improve the machining efficiency of sculptured surface machining.  相似文献   

14.
Between the steps of operation release and process control of the production activity control, no re-evaluation of the production organization is undertaken. However, the production organization can be technically optimized or modified. This level of production management is difficult to achieve, essentially because several fields come into play. It becomes apparent, however, that it is essential to integrate production management and production cell control in order to obtain advanced production systems which are more ‘reactive’ to technical and economic perturbations. In this paper, a contribution to the resolution of this problems is presented and the following ideas are introduced:
1. a control structure of production cells within “real-time production management functions”,
2. a control strategy of the cells by “scénario de production” (production scenario).
First of all, the functions of this control structure are described and then the principles of its generic utilization for the control of a complex production system are given. An executable production scenario is conceived according to the production management rules, the data and know-how of the fabricators also play a role. The last section of this paper describes, using an industrial example in the field of sub-contracted machining, the construction of such a scenario.  相似文献   

15.
介绍了基于曲面CNC(Computer Numerical Control)直接插补方式的多坐标曲面加工中进给速度的控制原理.综合考虑刀具相对零件表面切削进给速度的恒定,曲面形状引起的各运动轴速度及其变化率不超过伺服驱动能力,以及机床在启动、停止和速度变化时的平滑加减速运动控制等因素,实现了进给速度的合理确定与控制,可有效提高曲面加工质量和加工效率.  相似文献   

16.
组合曲面参数线五坐标加工刀具轨迹的计算   总被引:6,自引:1,他引:6  
提出了组合曲面间拓扑关系的建立方法.通过对曲面相邻边界及相邻角点拓扑信息查询,完成刀具路径的合理组织;针对目前在给定加工精度时确定参数增量算法存在的不足,提出基于等参数线的走刀步长追踪法,并对曲率半径趋于无穷大的情况及直纹面加工的情况进行单独处理,保证了算法的稳定性和有效性.在此基础上,系统地阐述了组合曲面加工中刀触点、刀位点的计算以及刀具轨迹的合理化组织。  相似文献   

17.
Triangular mesh enables the flexible construction of complex surface geometry and has become a general representation of 3D objects in computer graphics. However, the creation of a tool path with constant residual scallop height on triangular mesh surfaces in multi-axis machining is not a convenient task for current algorithms. In this study, an isoscallop tool path planning method for triangular mesh surfaces, in which the tool path is derived directly from the contours of a normalized geodesic distance field (GDF), without any post-processing is proposed. First, the GDF is built to determine the shortest geodesic distance from each vertex to the mesh boundary. Then, the normalizing process is performed on the GDF to ensure that its first contour meets the isoscallop height requirement considering the mesh curvature and effective cutter radius. To improve the computational efficiency, the GDF is only built in the mesh area related to the first contour by specifying a stop distance. Moreover, an adaptive refinement process is conducted on the mesh to improve the smoothness and accuracy of the tool path. Finally, the triangular mesh is trimmed along this first contour for a new round of tool path planning. The proposed method is organized recursively and terminated when no new paths are generated. Simulations and experiments are conducted to verify the effectiveness and superiority of the proposed tool path planning method.  相似文献   

18.
Computer numerical control (CNC) simulation systems based on 3D graphics have been well researched and developed for NC tool path verification and optimization. Although widely used in the manufacturing industries, these CNC simulation systems are usually software-centric rather than machine tool-centric. The user has to adjust himself from the 3D graphic environment to the real machining environment. Augmented reality (AR) is a technology that supplements a real world with virtual information, where virtual information is augmented on to real objects. This paper builds on previous works of integrating the AR technology with a CNC machining environment using tracking and registration methodologies, with an emphasis on in situ simulation. Specifically configured for a 3-axis CNC machine, a multi-regional computation scheme is proposed to render a cutting simulation between a real cutter and a virtual workpiece, which can be conducted in situ to provide the machinist with a familiar and comprehensive environment. A hybrid tracking method and an NC code-adaptive cutter registration method are proposed and validated with experimental results. The experiments conducted show that this in situ simulation system can enhance the operator’s understanding and inspection of the machining process as the simulations are performed on real machines. The potential application of the proposed system is in training and machining simulation before performing actual machining operations.  相似文献   

19.
针对截平面法规划的三角网格表面的刀轨长度较长、加工表面残留高度不均匀的问题,提出一种基于改进截平面法的等残留高度刀轨生成算法.首先在估算刀触点轨迹线垂直方向曲率半径的基础上,计算刀触点轨迹投影线并对其进行修正,去除其中冗余的投影点;然后由修正后的刀触点轨迹投影线构造驱动表面,利用驱动表面和网格表面迭代计算刀触点轨迹线;最后由刀触点轨迹线计算无干涉刀轨.与截平面法生成的刀轨进行比较分析的结果表明,文中算法生成的刀轨长度较小且获得的残留高度保持均匀,适合于三角网格表面表示的复杂表面的精加工.  相似文献   

20.
The complete structure of an AGV control system is described in the first part of this paper. The AGV control system is hierarchical and consists of five levels. The structure of one level does not depend on the structures of the other levels. This means that the control system depends on the design of the AGV at the lowest level only, at the actuator servo-control level and its coordination in realizing AGV primitive functions.The second part of the paper describes rules applicable to AGV steering. The structure of these rules depends on two groups of factors. The first group is dependent on information groups fed to the AGV processor by the position sensor. The second group of factors represents aims and conditions and AGV steering such as positioning accuracy, positioning time, allowed room for maneuver, the shape of the given trajectory, etc. The AGV steering rules contain sequences of primitive functions. These primitive functions are of such types as “turn left”, “straighten” (correct), “go straight on”, etc. Trajectory, as one of the basic factors, is defined at the level of controlling an elementary movement. The term “to control an elementary movement” means to select a transport road throughout the transport network and to code it using “elementary movement” such as “go straight” (relating to road section), “turn left” (relating to turning at a crossroad) etc.The results of the AGV steering simulation are presented in the third part of the paper. An exact kinematic AGV model used for stimulating control models is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号