首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The paper presents the thermal analysis of the Magnetron Injection Gun for 42 GHz, 200 kW gyrotron, which is used to provide a high quality hollow electron beam. The Finite Element Analysis code ANSYS has been used for the thermal and the structural simulation. The thermal analysis of the structure of Magnetron Injection Gun has been carried out to find out the effect of heater temperature required for maintaining more than 1,000°C at cathode emitter surface to get 10 A of beam current. These results have been experimentally verified. The experimental results closely match the ANSYS results. The effect of the radial expansion of the emitter radius on beam quality has also been analyzed.  相似文献   

2.
Subchannel analyses have been carried out for supercritical water-cooled fast reactor fuel assembly. Peak cladding surface temperature difference arising from subchannel heterogeneities have been calculated by using the improved subchannel analysis code STARS and was evaluated to be about 18.5 °C. Several suggestions have been also made for reducing the PCST difference arising from channel heterogeneity. Influences of local power peaking on deflection of cladding surface temperature are explained with pin power distribution taken from core depletion calculation in this paper. Maximum cladding surface temperature at nominal condition is evaluated to be 645.3 °C over the cycle. Statistical thermal design uncertainty associated with PCST calculation is evaluated by Monte-Carlo sampling technique combined with subchannel analysis code. Maximum statistical design uncertainty of PCST is calculated to be 31 °C and is in a good agreement with that from RTDP method. Influence of downward flow in seed region on system sensitivity is investigated by improved Monte-Carlo thermal design procedure. Limiting thermal condition of MCST is 681 °C (650 °C of nominal + 31 °C) within 95/95 limit for SWFR.  相似文献   

3.
Lithium is a very attractive element due to its very low radiation power, strong H retention as well as strong O getter activity. Flowing liquid lithium (FLiLi) device, to be used as a plasma-facing limiters, has been designed and will be tested in HT-7 tokamak. It is mainly composed of distributor, guide plate, collector, and heater as well as cooling loop. The heater uses heater strip and cooling loop design, to control the temperature of lithium on the guide plate ranging from 200 °C to 400 °C. The distributor attached to feeding pipe, distributes liquid lithium (LiLi) flowing on the guide plate. The collector was designed to reclaim the superfluous LiLi and transport it out of device.The paper focuses on the design of flowing liquid lithium device. In addition to the process of design, thermal analysis has been carried out using finite element method (FEM) for optimizing the structure of heater and cooling loop and results of analysis are presented.  相似文献   

4.
Uncoupled thermomechanical transient analyses have been carried out to investigate the behavior of IFMIF-EVEDA lithium test loop bayonet backplate target assembly under two selected start-up transient operational scenarios. The first transient scenario considered foresees that the target assembly, starting from the initial uniform temperature of 50 °C, is heated up uniquely by convective heat transfer with lithium, flowing from inlet to outlet nozzle at its reference nominal temperature and pressure, until its nominal steady state thermal field distribution is reached. The second transient scenario foresees, more realistically, that the target assembly, starting from the uniform temperature of 50 °C, is initially warmed-up by electric heaters mounted onto its main accessible surfaces and, subsequently, by convective heat transfer with lithium reference flow, until nominal steady state conditions are reached. Heaters have been supposed to operate in an on/off stepwise mode, resulting to be alternatively switched on and off in order to allow the target assembly thermal field to grow up minimizing thermal gradients. To this purpose, a parametric analysis has been performed to realistically assess, for each electric heater, its heat flux and duty-cycle. Numerical results obtained are presented and critically discussed.  相似文献   

5.
Sub-channel analysis can improve the accuracy of reactor core thermal design. However, the important initial parameters contain various uncertainties during reactor operation. In this work, the Sub-channel Analysis Code of Supercritical reactor (SACOS) code, which is also applicable for Pressurized Water Reactor (PWR), was used to study the coolant flow characteristic and fuel rod heat transfer characteristic of 1/8 assembly which has the maximum linear power density in 300 MWe PWR core firstly. Then the Wilks' method and Response Surface Method (RSM) were utilized to determine the influence of sub-channel input parameters uncertainties on the highest temperature of reactor core fuel rod and Minimum Departure from Nucleate Boiling Ratio (MDNBR). The results show that in the most conservative conditions, the maximum temperature of the fuel rod and MDNBR were 2167.4 °C and 1.08, respectively. Considering the uncertainties of assembly inlet flow rate, inlet coolant temperature and system pressure, the 95% probability values (with 95% confidence) of fuel rod maximum and MDNBR calculated using response surface methodology were 2144.0 °C and 1.6, while they were 2137 °C and 1.74 calculated by Wilks' approach. Results show that the uncertainty analysis methods can provide larger reactor design criteria margin to improve the economy of reactor. Furthermore, the code was developed to have the capacity to perform the uncertainty study of sub-channel calculation.  相似文献   

6.
This paper describes study on the procedure of raising the reactor thermal power and the reactor coolant flow rate during the power-raising phase of plant startup for the supercritical water-cooled fast reactor (SWFR), which is selected as one of the Generation IV reactor concepts. Since part of the seed fuel assemblies and all the blanket fuel assemblies of the SWFR are cooled by downward flow, the feedwater from the reactor vessel inlet nozzle to the mixing plenum located below the core is distributed among these fuel assemblies and the downcomer. The flow rate distribution as the function of both the reactor thermal power and the feedwater flow rate, which are the design parameters for the power-raising phase, is obtained by the thermal hydraulic calculations. Based on the flow rate distribution, thermal analyses and thermal-hydraulic stability analyses are carried out in order to obtain the available region of the reactor thermal power and the feedwater flow rate for the power-raising phase. The criteria for the “available” region are the maximum cladding surface temperature (MCST) and the decay ratio of thermal-hydraulic stability in three “hot” channels; two seed assemblies with upward/downward flow and a blanket assembly. The effects of various heat transfer correlations and axial power distributions are also studied.  相似文献   

7.
The concept of inherent safety features of the modular HTR design with respect to passive decay heat removal through conduction, radiation and natural convection was first introduced in the German HTR-module (pebble fuel) design and subsequently extended to other modular HTR design in recent years, e.g. PBMR (pebble fuel), GT-MHR (prismatic fuel) and the new generation reactor V/HTR (prismatic fuel).This paper presents the numerical simulations of the V/HTR using the thermal-hydraulic code THERMIX which was initially developed for the analysis of HTRs with pebble fuels, verified by experiments, subsequently adopted for applications in the HTRs with prismatic fuels and checked against the results of CRP-3 benchmark problem analyzed by various countries with diverse codes.In this paper, the thermal response of the V/HTR (operating inlet/outlet temperatures 490/1000 °C) during post shutdown passive cooling under pressurized and depressurized primary system conditions has been investigated. Additional investigations have also been carried out to determine the influence of other inlet/outlet operating temperatures (e.g. 490/850, 350/850 or 350/1000 °C) on the maximum fuel and pressure vessel temperature during depressurized cooldown condition. In addition, some sensitivity analyses have also been performed to evaluate the effect of varying the parameters, i.e. decay heat, graphite conductivity, surface emissivity, etc., on the maximum fuel and pressure vessel temperature. The results show that the nominal peak fuel temperatures remain below 1600 °C for all these cases, which is the limiting temperature relating to radioactivity release from the fuel. The analyses presented in this paper demonstrate that the code THERMIX can be successfully applied for the thermal calculation of HTRs with prismatic fuel. The results also provide some fundamental information for the design optimization of V/HTR with respect to its maximum thermal power, operating temperatures, etc.  相似文献   

8.
《Annals of Nuclear Energy》2006,33(11-12):945-956
Fuel rod design for high power density supercritical water-cooled fast reactor was conducted with mixed-oxide (MOX) fuel and stainless steel (SUS304) cladding under the limiting cladding surface temperature of 650 °C. Fuel and cladding integrities, and flow-induced vibration were taken into account as design criteria. Designed fuel rod has the diameter of 7.6 mm and is arranged in the fuel assembly with pitch-to-diameter ratio of 1.14. New core arrangement for negative void reactivity is proposed by three-dimensional tri-z core calculation fully coupled with thermal hydraulic calculation, where ZrH layer concept is used for negative void reactivity. The core has high power density of 156 W/cm3 and its equivalent diameter is only 2.7 m for 1000 MWe class reactor core. High average core outlet temperature of 500 °C is achieved by introducing radial fuel enrichment zoning and downward flow in seed assembly. Small pressure vessel size and simplified direct steam cycle with higher thermal efficiency give an economical potential in aspect of capital and operating cost.  相似文献   

9.
Experimental studies are carried out on natural circulation in a Lead Bismuth Eutectic (LBE) loop. The loop mainly consists of a heated section, air heat exchanger, valves, various tanks and argon gas control system. All the components and piping are made of SS316L. The dissolved oxygen in the LBE is monitored online by an Yttria Stabilised Zirconia (YSZ) oxygen sensor and controlled during the operation of the loop. In this paper the details of the loop and experimental studies carried out with heater power levels varying from 900 W to 5000 W are described. The temperature range of LBE during the experiments was 200 °C–500 °C. The maximum heat loss in the piping is kept less than 20% of the main heater power. Steady state experimental studies are carried out at different power levels and the LBE flow rate was found to be varying from 0.095 kg/s to 0.135 kg/s. The analysis and results of the performance of the heat exchanger with air and water as the secondary coolants are also discussed in the paper. Transient studies were carried out to simulate various events like heat sink loss, step power change and secondary side coolant flow rate change and reported in the paper. In the start up experiments, where the flow is started from stagnant condition of LBE, the time required for starting of natural circulation is found to be 600 s, 400 s and 240 s with power level of 1200 W, 2400 W and 3000 W respectively. The results are compared with available correlation and prediction of computer code LeBENC.  相似文献   

10.
In this paper thermal and structural analysis of RF window for 42 GHz, 200 kW Gyrotron has been carried out using ANSYS software and discussed in the paper. To evaluate the thermal and structural aspects of the window for 42 GHz Gyrotron during extreme case of operation, i.e. at saturation have been carried out. Temperature profiles have been obtained for different values of dielectric loss. The temperature range on the sapphire disc surface has been found to be 30–68°C. The window performance has been found satisfactory.  相似文献   

11.
在超临界水冷堆预概念设计中,组件设计是十分重要的,将影响堆芯性能。超临界水冷堆中水密度变化剧烈的特性要求必须进行核热耦合分析。从中子学及热工性能角度,使用三维核热耦合程序对环形燃料组件进行了优化设计。应用中子学计算程序FENNEL-N对环形燃料组件进行三维扩散计算,可得到组件内单棒功率分布,应用热工计算程序SUBSC对组件进行子通道分析。在计算过程中,分析了燃料棒间距及燃料棒与组件壁盒之间的间隙对组件性能的影响。计算结果显示,增大棒间距和棒壁间隙能提高组件kinf,但会增大组件内功率峰因子;子通道受热不均匀性对组件热工性能影响较大,通过加入定位格架的方式能展平冷却剂出口温度,降低最大包壳温度。对环形燃料组件的安全分析表明,从中子学角度该组件是安全的。  相似文献   

12.
In order to increase the transmutation capability for the Pb-Bi cooled burner, PEACER, metallic fuel rods (60U–30TRU–10Zr with Pb-bond in HT-9 clad) having a short (50 cm) active length with a large gas plenum have been designed with a peak design TRU burnup of 15%. A 17 × 17 square-lattice with relatively high pitch-to-diameter ratio was employed to reduce the actinide production and pumping load associated with the high-density coolant. Fuel rod failure modes are identified and fuel design criteria are established. A fuel rod design model, named as RODSIS, has been obtained by incorporating Pb properties and a cladding oxidation rate equation. A thermal analysis has been conducted for a fuel rod having peak-power based on a predicted power distribution and history during an equilibrium cycle. Taking into account the high coolant density, all fuel rods are fastened in the assembly using a stiff middle grid structure and softer end grids made of HT-9. Based on fuel rod thermal analysis results, a finite element analysis (FEA) has been conducted for both thermal and mechanical analyses of the middle grid structure. Furthermore, a fuel assembly static analysis has been conducted to determine the consequences of the axial loading caused by buoyancy and flow. The PEACER fuel system design was visualized by using a three-dimensional design and visualization software.  相似文献   

13.
This paper describes results of an experimental program to reduce uncertainties associated with the thermal-hydraulic design and analysis of LMFBR blanket assemblies. These assemblies differ significantly from fuel assemblies in design detail and operating conditions. In blanket assemblies, heat transfer occurs over a wide range of complex operating conditions. The range and complexity of conditions are the result of flux and power gradients which are an inherent feature of the blanket region and the power generation level in an assembly which can vary from 20 kW to 2 MW. To provide effective cooling of all assemblies and economical operation, coolant is metered to groups of assemblies in proportion to their ultimate power level. As a result, the assembly flow can be in the laminar, transition or turbulent range. Because of the wide range of heat generation rates and the range of coolant flow velocities, heat transfer from rods to coolant may take place in the forced, natural or mixed convection mode. Under low flow conditions, buoyancy affects the flow pattern in the bundle, and thus, alters the temperature distribution. The complexities are further compounded since, in addition to temperature gradients within an assembly, there are also significant temperature differences between adjacent assemblies. This results in heat transfer by conduction between adjacent assemblies, which tends to further distort flow and temperature patterns.Since these effects cannot be accurately predicted analytically, full-size radial blanket assembly heat transfer tests are being conducted using electrically heated fuel rod simulators in flowing sodium. A 61-rod electrically heated radial blanket assembly mockup of prototypic dimensions was designed, constructed and installed in a 200 gpm (45 m3/hr) sodium test loop.Heat transfer tests are being conducted over a wide range of power and sodium flow rates with this full-scale, vertical, electrical-resistance-heated rod bundle. The rod bundle is extensively instrumented by thermocouples located at six distinct elevations in the wire wrap and inside the heater cladding. Tests were conducted covering the flow range from fully turbulent to fully laminar with approximately constant power-to-flow ratio. The power input patterns included across bundle gradients of 2.8 to 1 and 2.0 to 1 maximum to minimum, uniform power input to all rods and a dished distribution with low power in the central row and high power in the two rows of rods adjacent to the duct walls.The test program provided experimentally measured axial and transverse temperature profiles for the test model over a range of anticipated plant operating conditions. The data were used to (a) determine the effect of Reynolds Number, power gradients and power-to-flow ratio on transverse and axial temperature profiles and particularly on peak and peripheral channel temperatures; (b) determine the effect of inter-assembly heat transfer on peak temperatures and temperature distributions; and (c) determine the effect of buoyancy on temperature profiles.  相似文献   

14.
A 3.6 MW (66 kV/55 A) DC power supply system was developed for the 170 GHz EC H&CD system in KSTAR. The power supply system consists of a cathode power supply (CPS), an anode power supply (APS) and a body power supply (BPS). The cathode power supply is capable of supplying a maximum voltage of ?66 kV and a current of 55 A to the cathode with respect to the collector using pulse step modulation (PSM). The high voltage switching system for the cathode is made by a fast MOS-FET solid-state switch which can turn off the high voltage to the cathode within 3 μs in the occurrence of gyrotron faults. The APS is a voltage divider system consisting of a fixed resistor and zener diode units with the capability of 60 kV stand-off voltage. The anode voltage with respect to the cathode is controlled in a range of 0–60 kV by turning the MOS-FET switches connected in parallel to each zener diode on and off. For high frequency current modulation of the gyrotron, the parallel discharge switch is introduced between the cathode and anode in order to clamp the charged voltage in the stray capacitance. The BPS is a DC power supply with the capability of 50 kV/160 mA. The nominal operation parameter of BPS was 23 kV and 10 mA, respectively, and the voltage output is regulated with a stability of 0.025% of the rated voltage. The series MOS-FET solid-state switch is used for on/off modulation in the body voltage sychronizing with anode voltage. The parallel discharge switch is also introduced between the body and collector for high frequency RF modulation. This paper describes the key features of the high voltage power supply system of the KSTAR 170 GHz gyrotron as well as the test results of the power supply.  相似文献   

15.
The High Performance Light Water Reactor is a Generation IV light water reactor concept, operated at a supercritical pressure of 25 MPa with a core outlet temperature of 500 °C. A thermal core design for this reactor has been worked out by a consortium of Euratom member states within the 6th European Framework Program. Aiming at peak cladding temperatures of less than 630 °C, including uncertainties and allowances for operation, the coolant is heated up in three steps with intermediate coolant mixing to eliminate hot streaks. Different from conventional reactors, the radial power profile is intended to be non-uniform, with the highest power in the first heat-up step in the core center and the lowest power in the second superheater step to result in the same peak cladding temperatures in each region. The concept has been studied with neutronic, thermal-hydraulic and structural analyses to assess its feasibility. Coupled neutronic/thermal-hydraulic analyses are defining the initial distribution of enrichment, control rod positions and the use of burnable poisons. Sub-channel analyses predict the coolant mixing inside assemblies, and a porous media approach simulates the flow of moderator water between assembly boxes. Finally, structural analyses of the assembly boxes are needed to minimize deformations during operation. Even though the core design cannot yet considered to be final, this state of the art review shall summarize the progress achieved so far and outline the remaining challenges.  相似文献   

16.
The use of thorium in pressurized water reactor fuel assemblies is investigated in this paper. The novelty of the reported work is to study a fuel design primarily intended to control the excess of reactivity at beginning of life, and flatten the intra-assembly power distribution rather than converting fertile Th-232 into fissile U-233. The fuel assembly is a traditional 17 × 17 pressurized water reactor fuel design. The majority of the fuel pins contain a mixture of uranium and thorium oxides, while a few fuel pins contain a mixture between uranium and gadolinium oxides. The calculation were performed by two-dimensional transport calculations with the Studsvik Scandpower CASMO-4E code in order to determine the main neutronic properties of the new fuel design, compared with the traditional uranium-based fuel assembly containing gadolinium used as reference. The majority of the neutronic properties of the uranium-thorium-based fuel assembly were similar to the reference fuel assembly. The Doppler and the moderator temperature coefficients of reactivity were found to be appreciably more negative in the uranium-thorium-based design, but still within acceptable limits. One advantage of this new uranium-thorium-based design is a reduction of the pin peak power at beginning of life, because of smaller amount of gadolinium being used. This is important from an operational and safety viewpoint, since the margin to departure from nucleate boiling becomes larger. Consequently, this new type of thorium-based fuel assembly shows advantageous properties for use in power-uprated cores.  相似文献   

17.
EUROFER 97 steel is a candidate structural material for the future fusion power reactors, as well as for the European Test Blanket Modules (TBMs) to be tested in ITER. In the reported study, the microstructure of EUROFER 97 was modified by hydrostatic extrusion (HE) which reduced the grain size from 400 to 86 nm and that of the carbide particles from 111 to 75 nm. The changes in the microstructure significantly improved the strength of the extruded samples. However, it is important that the enhanced properties of nanostructured materials are stable over the required range of intended service temperature. The thermal stability of the nanostructured EUROFER steel was evaluated by subjecting the hydrostatically extruded samples to annealing at temperatures ranging from 473 to 1073 K (200–800 °C) for 1 h. Tensile tests and microhardness measurements with a 200 g load were carried out on the annealed samples to determine the effect of the heat treatment. The results show that the highest microhardness (403 HV0.2) was achieved for samples annealed at 673 K. However, the tensile and yield strength decreased at the higher temperature of 873 K and the total elongation increased to 15%, compared to only 3% for as-extruded samples. The changes in the mechanical properties were rationalized by the examination of the microstructural changes. During heating the initial grain size remains virtually unchanged below a temperature of 873 K. However, above 873 K the grain size increased and it is very likely that growth will be very rapid at higher temperatures.  相似文献   

18.
Spanish Breeding Blanket Technology Programme TECNO_FUS is exploring the technological capabilities of a Dual-Coolant He/Pb15.7Li breeding blanket for DEMO and studying new breeding blanket design specifications. The progress of the channel conceptual design is being conducted in parallel with the extension of MHD computational capabilities of CFD tools and the underlying physics of MHD models. A qualification of MHD effects under present blanket design specifications and some approaches to their modelling were proposed by the authors in [1]. The analysis was accomplished with the 2D transient algorithm from Sommeria and Moreau [2] and implemented in the OpenFOAM CFD toolbox [3]. The thermal coupling was implemented by means of the Boussinesq hypothesis. Previous analyses showed the need of improvement of FCI thickness and thermal properties in order to obtain a desirable liquid metal temperature gain of 300 °C. In the present study, an assessment through sensitivity and parametric analyses of the required FCI thickness is performed.Numerical simulations have been carried out considering a Robin-type thermal boundary condition which assumes 1D steady state thermal balance across the solid FCI and Eurofer layers. Such boundary condition has been validated with a fluid–solid coupled domain analysis.Results for the studied flow conditions and channel dimensions show that, in order to obtain a liquid metal temperature gain of about 300 °C, the required FCI material should have a very small effective heat transfer coefficient ((k/δ)  1 W/m2K) and fluid velocities should be about 0.2 m/s or less. Moreover, special attention has to be placed on the temperature difference across the FCI layer. However, for a maximised liquid metal thermal gain, higher velocities would be preferable, what would also imply a reduced temperature difference across the FCI layer.  相似文献   

19.
Coated plutonia particle fuel has been proposed recently for use in radioisotope power systems and radioisotope heater units for a variety of space missions requiring power levels from milliwatts to tens or even hundreds of watts. The 238PuO2 fuel kernels are coated with a strong layer of ZrC designed to fully retain the helium gas generated by the radioactive decay of 238Pu. A recent investigation has concluded that helium retention in large-grain (200 μm) granular and polycrystalline fuel kernels is possible even at high-temperatures (>1700 K). Results of performance analysis showed that this fuel form could increase by 2.3–2.4 times the thermal power output of a light weight radioisotope heater unit. These figures are for a single-size (500 μm) particles compact, assuming 10% and 5% helium gas release respectively, and a fuel temperature of 1723 K, following 10 years of storage. A binary-size (300 and 1200 μm) particles compact increases the thermal power output of the RHU by an additional 15%.  相似文献   

20.
A Water-cooled Pressure Tube Energy production blanket (WPTE) for fusion driven subcritical reactor has been designed to achieve 3000 MW thermal power with self-sustaining tritium cycle. Pressurized water has great advantages in energy production; however the high pressure may cause some severe structural design issues. This paper proposes a new concept of water-cooled blanket. To solve the problem of the high pressure of the coolant, the pressure tube was adopted in the design and in the meantime, the thickness of the first wall can be significantly reduced as result of adopting pressure tube. The numerically simulating and calculating of temperature, stress distribution and flow analyses were carried out and the feasibility of using water as coolant was discussed. The results demonstrated the engineering feasibility of the water-cooled fusion–fission hybrid reactor blanket module.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号