首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 180 毫秒
1.
为解决低励磁阻抗多绕组变压器建模、多绕组变压器复合短路阻抗及多并联支路间电流分配计算的问题,基于组合式场路耦合分析,给出一种高效、通用的多绕组变压器建模和阻抗参数设计方法。根据初步设计的变压器结构,采用磁场能量法,二次开发出基于ANSYS参数化设计语言(ANSYS parametric design language,APDL)的三维静态磁场专用分析程序,计算出多绕组电感矩阵,并以此为依据构建多绕组变压器的线性仿真模型,进行相关仿真研究。通过仿真结果反馈的信息适当修改变压器结构以满足要求。实验结果表明,所提方法能够准确计算出多并联支路间电流分配,各种短路工况下复合短路阻抗计算结果可满足工程实践的需要。  相似文献   

2.
为准确计算出分裂变压器高、低压绕组间的短路阻抗,首先采用ANSYS的三维静态磁标势法数值计算得出高压多并联支路与单个低压绕组间的多绕组电感矩阵,并依据电路理论将其简化为等效双绕组电感矩阵,进而得到短路阻抗百分比,并推导了高压各并联支路电流分配,最后给出一个概念设计的分裂式高温超导变压器算例。计算结果表明,低压各分裂绕组分别单独运行时,高压绕组的各并联支路电流分配不均,主要集中在与运行的低压分裂绕组紧耦合的高压支路中,故高压绕组与低压各分裂绕组间的短路阻抗主要由紧耦合的高压支路与低压分裂绕组间的漏磁路决定。  相似文献   

3.
为得到干式电压互感器一次绕组匝间绝缘故障的有效在线监测参量,首先推导出一次绕组分布电阻、电感及电容估算公式,根据某型号干式电压互感器结构参数估算其一次绕组分布参数,得到了等效电抗、等效阻抗模和功率因数3个电气参数计算公式。计算一次绕组不同位置出现单匝、多匝短路故障前后的电气参数,分析其变化规律。结果表明:发生匝间故障时,功率因数的相对变化量最大,等效电抗及等效阻抗模的相对变化量较小;匝间短路位置位于中层中部时电气参数相对变化量达到最大;多匝短路故障时电气参数相对变化量大于单匝短路。建议将功率因数作为干式电压互感器一次绕组匝间绝缘故障的在线监测量。  相似文献   

4.
多绕组变压器复合短路阻抗的求解方法   总被引:7,自引:1,他引:7  
给出了复合短路阻抗的定义 ;提出了求解单相多绕组变压器复合短路阻抗的方法 :用常规的方法准确计算变压器所有两绕组间的短路阻抗 ;用论文中推导的公式计算变压器的导纳矩阵 ;利用各种短路工况所决定的端口条件 ,求解由上述导纳矩阵决定的多绕组变压器电压与电流关系线性方程组 ,获得变压器各绕组的电压、电流 ;利用这些已知的电压、电流 ,最后求得短路工况所决定的变压器复合短路阻抗。以我国最近研制成的 30 5km/h的高速电力机车主变压器为例 ,给出了各种复合短路阻抗的计算值和试验值。结果表明论文所提出的方法是正确的 ,有实用价值  相似文献   

5.
针对星角接线变压器低压绕组匝间短路问题,建立了变压器匝间短路等效模型,并推导出了低压环流和短路绕组电流表达式,然后根据磁动势守恒提出了基于等效电流法的故障分析方法。  相似文献   

6.
基于多回路理论的转子匝间短路时定子并联支路环流分析   总被引:2,自引:0,他引:2  
发电机的转子绕组匝间短路故障会造成发电机定子并联支路的环流增大,而目前对于定子并联支路环流的分析主要通过实验检测及定性分析,由于不能准确计算故障电流等电气量,在实际应用中存在局限性.针对SDF-9型故障模拟实验机组的转子绕组匝间短路进行模拟仿真并对故障进行定量计算,通过实验验证由多回路模型所计算的定子并联支路环流大小的准确性,从而可依据此模型准确计算转子匝间短路不同短路匝数时的定子并联支路环流大小,为转子匝间短路的保护提供依据.  相似文献   

7.
为了分析汽轮发电机励磁绕组匝间短路故障机理,建立考虑转子铁心涡流影响的汽轮发电机空载时励磁绕组匝间短路多回路数学模型。用气隙磁导法推导了与汽轮发电机励磁绕组有关的单个线圈间电感系数的计算公式。采用该模型对空载时有无励磁绕组匝间短路故障2种工况分别进行仿真,得到了励磁电流、定子并联支路环流、定子电压仿真波形。通过仿真研究还得到励磁绕组匝间短路后的2个故障特征:在外加恒定励磁电压的情况下,励磁电流逐渐增大到另一个稳定值;定子并联支路间出现了环流。通过实验验证了所建多回路数学模型的正确性。为汽轮发电机励磁绕组匝间短路故障检测和诊断提供参考。  相似文献   

8.
运行于双流制下的电气机车,其变压器在直流供电时用作电抗器,为此,在设计上可能要降低用作变压器的部分技术指标。应用"场-路"结合法分析了一台运行于双流制下的四分裂式变压器用作变压器时的有关特性,即在磁场分析的基础上计算变压器多个绕组的电感矩阵,并用求解电路的方法计算多个工况下的高压绕组各支路电流分配关系及短路阻抗。分析表明:短路阻抗亦与厂方设计值较接近;与单一供电制式下仅用作变压器时比较,单个低压绕组运行时与之耦合最紧;多个绕组电感矩阵计算的正确性由变压器用做电抗器时的电感实测值得到验证;密高压绕组支路的电流分配系数略小。  相似文献   

9.
转子绕组匝间短路是发电机常见的电气故障之一,为了对其进行有效监测和诊断,在分析发电机正常情况以及在转子绕组匝间短路故障时定子绕组并联支路的环流特性的基础上,提出了一种基于环流特性的转子绕组匝间短路故障诊断方法。通过分析汽轮发电机在正常运行和转子绕组匝间短路故障时的气隙磁势、磁导、磁密,推导得到了发电机定子绕组各并联支路感应电动势瞬时值和电势差的瞬时值表达式。然后详细分析了转子绕组匝间短路故障时定子绕组并联支路环流各次谐波成分与对应故障参数的变化关系,从而得到了定子绕组并联支路环流特性,故障将使环流频谱二倍频成分突出,环流值将随着转子绕组短路程度的加重而增大。最后实测了SDF-9型故障模拟发电机正常及转子绕组匝间短路故障时环流信号,与理论分析结果基本符合。  相似文献   

10.
变压器匝间短路建模及其实际应用   总被引:2,自引:0,他引:2       下载免费PDF全文
针对变压器匝间短路问题,提出将短路绕组等效成两个不同绕组的思路,并以三绕组变压器低压侧匝间短路为例进行建模,首先把发生短路的三绕组变压器等效为四绕组变压器,然后推导变压器的中低压侧电压公式。根据公式不仅可以计算短路信息,还证明了中低压侧电压都有明显降低,且低压绕组电压降低更严重。利用建立的模型,对广西电网某220 kV变压器匝间短路事故进行Matlab仿真分析,仿真曲线及短路匝数判断与实际录波波形及检查结果吻合,验证了模型的正确性。  相似文献   

11.
电力变压器绕组状态实时监测算法   总被引:2,自引:1,他引:1  
为及时发现电力变压器绕组变形等潜伏性故障,需要实时监测变压器绕组的状态。建立了变压器绕组的数学模型,利用变压器原、次边的电压、电流信号对变压器的短路阻抗进行在线辨识。其方法是:实时采集模型变压器原、次边的电压、电流信号后,针对电压、电流传感器采集信号的特点,应用小波变换除去噪声,再利用基于离散傅里叶变换的高精度相位识别法辨识各正弦量间的相位差,得到各负载情况下变压器绕组等效电路的短路阻抗。利用模型三相变压器搭建的变压器绕组状态监测平台进行实验,结果表明,变压器绕组未发生状态改变时,不同负载情况下短路阻抗的辨识差别不超过0.64%;若变压器绕组发生变形及匝间短路等故障,短路阻抗的变化量达到5.6%以上,证明所提出的监测算法是有效的。  相似文献   

12.
为评估在运的大型电力变压器抗短路能力水平,确保电网安全稳定运行,文章提出了一种基于系统等值阻抗的变压器短路电流核算方法。在对变压器高中侧的外部系统进行等值基础上,通过已知的母线短路电流和变压器参数反推系统的等值阻抗,然后根据系统阻抗和变压器参数求得各种短路情况下流过变压器的短路电流。仿真及实例验证说明了算法的准确性,应用算法可以实现对变电站各种方式下短路电流的快速批量计算。使用文章提出的方法对母线短路电流、变压器并联数量等因素对变压器短路电流的影响进行了分析,并结合制造厂提供的短路电流限值对变压器的抗短路能力进行评估,为生产管理部门的技术改造提供技术参考。  相似文献   

13.
This paper deals with the problem of accounting for changes in the magnetic flux leakage of traction transformer windings under discrete cyclic load switching of traction winding sections during the simulation of continuous processes. It is proposed to take into account this change by introducing a fictitious mutual inductance and active components of the mutual impedance between the windings, which can be determined using the theory of a multiwinding transformer. A method for mathematical representation and computer simulation of the traction transformer with tapped secondary windings is considered based on the notation of the system of differential equations in the state space. Expressions for the calculation of the leakage inductance of the transformer windings and mutual inductances that take into account the change in the magnetic field of the winding leakage in the case of the discrete cyclic load switching of the tapped secondary windings. An algorithm for calculation of matrix elements of the equation of state is constructed. A simulation mathematical model of the traction transformer is developed in the Matlab/Simulink environment that takes into account the winding leakage field variation under discrete cyclic switching of the load of sections of traction windings. The adequacy of the proposed simulation mathematical model is proven by comparison of short-circuit currents obtained as a result of the simulation with currents of traction transformer short-circuit field tests.  相似文献   

14.
电力机车主变压器空载合闸瞬变过程仿真   总被引:1,自引:0,他引:1  
电力机车主变压器空载合闸电磁瞬变过程复杂,常规工程计算方法精度与效率不高。为此引入复合短路阻抗,将多绕组变压器模型简化,并在MATLAB/PSB中建立了能够反映多绕组电力机车主变压器空载合闸的仿真模型。结合模型给出了其等值阻抗、合闸初始相位角、剩磁和饱和特性对其空载合闸产生的励磁涌流影响的分析。仿真结果为电力机车主变压器的继电保护、电磁设计和运行系统控制提供了重要的理论依据。  相似文献   

15.
测量短路电抗是判断变压器绕组变形的有效方法   总被引:25,自引:3,他引:22  
曾刚远 《变压器》1998,35(8):13-17
从理论和实践的结合上阐述了测量短路电抗可以判断变压器绕组是否变形的道理,分析了三相变压器不同联结组短路阻抗的测量计算方法,介绍了测量仪器的选择和使用注意事项。  相似文献   

16.
针对城轨交通供电系统的传统换流站产生的谐波和无功功率由变压器绕组注入交流网侧,既增大变压器制造成本,又产生噪音问题,提出了一种具有内部三角形绕组的自耦补偿与谐波屏蔽换流变压器,它将传统无功补偿装置移至绕组内部且公共绕组的等效短路阻抗为零阻抗设计,使二次侧各种谐波源无法进入高压网络,有效抑制了供电系统中的谐波成分,从而具备自耦补偿和谐波屏蔽功能。对比传统的轴向双分裂式12脉波牵引整流变压器,分析新型换流变压器的谐波电流后计算出了变压器网侧电流特征谐波。新型换流变压器可以进一步减小网侧特征谐波,且解决了传统的轴向双分裂式12脉波牵引整流变压器副边匝比问题。  相似文献   

17.
感应滤波器对新型换流变压器短路阻抗的影响   总被引:1,自引:0,他引:1  
换流变压器的短路阻抗是高压直流输电系统中一项重要技术参数。与传统的换流变压器相比,新型换流变压器具有独特的绕组联结方式。本文针对新型换流变压器拓扑结构的特殊性,分别推导阀侧短路阻抗ZK,网侧短路阻抗Zk与滤波器阻抗Zf的数学关系。通过分析短路阻抗和滤波器阻抗的关系,在未投入和投入感应滤波器的情况下,短路阻抗值的变化较小,表明滤波器的阻抗对短路阻抗的影响较小。而通过对比短路阻抗ZK和Zk,可知网侧短路和阀侧短路时得到的短路阻抗值基本上是相等的,说明新型换流变压器的阻抗是对称的。最后通过对理论计算值、仿真结果和实验结果的对比分析,验证了本文理论分析的正确性。  相似文献   

18.
李文平 《变压器》1998,35(9):1-4
介绍了多绕组变压器各等值绕组间阻抗的计算方法及低压纸组各并绕导线的电流分布,给出了计算实例。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号