首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work proposes an efficient combined treatment for the decontamination of a pesticide-containing wastewater resulting from phytopharmaceutical plastic containers washing, presenting a moderate organic load (COD = 1662-1960 mg O2 L−1; DOC = 513-696 mg C L−1), with a high biodegradable organic carbon fraction (81%; BOD5 = 1350-1600 mg O2 L−1) and a remaining recalcitrant organic carbon mainly due to pesticides. Nineteen pesticides were quantified by LC-MS/MS at concentrations between 0.02 and 45 mg L−1 (14-19% of DOC). The decontamination strategy involved a sequential three-step treatment: (a) biological oxidation process, leading to almost complete removal of the biodegradable organic carbon fraction; (b) solar photo-Fenton process using CPCs, enhancing the bio-treated wastewater biodegradability, mainly due to pesticides degradation into low-molecular-weight carboxylate anions; (c) and a final polishing step to remove the residual biodegradable organic carbon, using a biological oxidation process. Treatment performance was evaluated in terms of mineralization degree (DOC), pesticides content (LC-MS/MS), inorganic ions and low-molecular-weight carboxylate anions (IC) concentrations. The estimated phototreatment energy necessary to reach a biodegradable wastewater, considering pesticides and low-molecular-weight carboxylate anions concentrations, Zahn-Wellens test and BOD5/COD ratio, was only 2.3 kJUV L−1 (45 min of photo-Fenton at a constant solar UV power of 30 W m−2), consuming 16 mM of H2O2, which pointed to 52% mineralization and an abatement higher than 86% for 18 pesticides. The biological oxidation/solar photo-Fenton/biological oxidation treatment system achieved pesticide removals below the respective detection limits and 79% mineralization, leading to a COD value lower than 150 mg O2 L−1, which is in agreement with Portuguese discharge limits regarding water bodies.  相似文献   

2.
We present a model that considers UV-absorbing dissolved organic matter (DOM) to consist of two components (A and B), each with a distinct and constant spectrum. Component A absorbs UV light strongly, and is therefore presumed to possess aromatic chromophores and hydrophobic character, whereas B absorbs weakly and can be assumed hydrophilic. We parameterised the model with dissolved organic carbon concentrations [DOC] and corresponding UV spectra for c. 1700 filtered surface water samples from North America and the United Kingdom, by optimising extinction coefficients for A and B, together with a small constant concentration of non-absorbing DOM (0.80 mg DOC L−1). Good unbiased predictions of [DOC] from absorbance data at 270 and 350 nm were obtained (r2 = 0.98), the sum of squared residuals in [DOC] being reduced by 66% compared to a regression model fitted to absorbance at 270 nm alone. The parameterised model can use measured optical absorbance values at any pair of suitable wavelengths to calculate both [DOC] and the relative amounts of A and B in a water sample, i.e. measures of quantity and quality. Blind prediction of [DOC] was satisfactory for 9 of 11 independent data sets (181 of 213 individual samples).  相似文献   

3.
The aim of this paper was to assess the extent of biodegradable dissolved organic carbon formation upon disinfection of water with chlorine dioxide. Wide diversity of natural waters has been subjected to reactions with various amounts of ClO2. For comparison examined waters have also been treated with ozone and chlorine. The application of chlorine dioxide and ozone significantly changed the molecular weight distribution of aquatic organic matter. As a result significant amounts of biodegradable carboxylic acids and aldehydes were generated. The formic, acetic, oxalic and ketomalonic acids as well as formaldehyde, acetaldehyde, glyoxal, methylglyoxal were identified. The productivity of aldehydes calculated for all examined waters and disinfectants amounted 12.7-47.7 μg mg−1 DOC in the case of ozonation, 1.3-8.1 μg mg−1 DOC after chlorination and 1.7-9.4 μg mg−1 DOC for ClO2 treatment. The highest total concentration of carboxylic acids was determined after the ozonation processes. In this case the organic acids' formation potential was in the range 10.8-62.8 μg mg−1 DOC. Relatively high formation potential (5.3-17.9 μg mg−1 DOC) was determined after the oxidation with ClO2 as well. In the case of chlorination, the productivity of organic acids was low and did not exceed 3.4 μg mg−1 DOC. The relatively high correlation between BDOC formation and carboxylic acids' formation potential was observed. Thus, carboxylic acids' formation potential may be used as a measure of water potential to form BDOC.  相似文献   

4.
Ultrasonic treatment of water contaminated with ibuprofen   总被引:6,自引:0,他引:6  
The application of ultrasound (US) waves for remediation of wastewater is an area of increasing interest and promising results. The aim of this paper is to evaluate the influence of several parameters of the US process on the degradation of ibuprofen (IBP), a widely used non-steroidal anti-inflammatory recalcitrant drug found in water. Applied US power, dissolved gas, pH and initial concentration of IBP were the parameters investigated under sonication (300 kHz).Ultrasound increased the degradation of IBP from 30 to 98% in 30 min. Initial rate of IBP degradation was evaluated in the range of 1.35 and 6.1 μmol L−1 min−1 for initial concentrations of 2 to 21 mg L−1 or 9.7 μmol L−1 to 101 μmol L−1, respectively. Under air and oxygen the degradation rate of IBP was 4 μmol L−1 min−1 being higher than that when argon was used. The most favorable degradation pH was acidic media. Complete removal of IBP was achieved but some dissolved organic carbon (DOC) remained in solution showing that long-lived intermediates were recalcitrant to the US irradiation. However, chemical and biological oxygen demands (COD and BOD5) indicated that the process oxidize the ibuprofen compound to biodegradable substances removable in a subsequent biological step.  相似文献   

5.
We report the formation of bromoform in TiO2 suspensions (P25) under simulated solar UV irradiation at different concentrations of photocatalyst (0.5-1.5 g L−1) as well as initial concentrations of bromide ions (1-3 mg L−1) and 2,4-dihydroxybenzoic acid (2-10 mg L−1). The extent of bromoform formation (3-17 μg L−1) was most strongly affected by the amount of photocatalyst present and by the initial bromide concentration, increasing either of which leads to increased bromoform formation. Important interaction effects were observed when simultaneously increasing the concentrations of TiO2 and bromide as well as of bromide and DHBA. The time it takes for bromoform to appear in measurable concentrations in the irradiated TiO2 suspensions was between 10 and 90 min and most strongly depended on the initial concentration of dissolved organic carbon present in the suspensions, along with the amount of photocatalyst, also in interaction with the initial bromide concentration.  相似文献   

6.
Increasing concern about the fate of 17α-ethinylestradiol (EE2) in the environment stimulates the search for alternative methods for wastewater treatment plant (WWTP) effluent polishing. The aim of this study was to establish an innovative and effective biological removal technique for EE2 by means of a nitrifier enrichment culture (NEC) applied in a membrane bioreactor (MBR). In batch incubation tests, the microbial consortium was able to remove EE2 from both a synthetic minimal medium and WWTP effluent. A maximum EE2 removal rate of 9.0 μg EE2 g−1 biomass-VSS h−1 was achieved (>94% removal efficiency). Incubation of the heterotrophic bacteria isolated from the NEC did not result in a significant EE2 removal, indicating the importance of nitrification as driving force in the mechanism. Application of the NEC in a MBR to treat a synthetic influent with an EE2 concentration of 83 ng EE2 L−1 resulted in a removal efficiency of 99% (loading rates up to 208 ng EE2 L−1 d−1; membrane flux rate: 6.9 L m−2 h−1). Simultaneously, complete nitrification was achieved at an optimal ammonium influent concentration of 1.0 mg NH4+-N L−1. This minimal NH4+-N input is very advantageous for effluent polishing since the concomitant effluent nitrate concentrations will be low as well and it offers opportunities for the nitrifying MBR as a promising add-on technology for WWTP effluent polishing.  相似文献   

7.
In the present study the degradation kinetics and mineralization of diclofenac (DCF) by the TiO2 photocatalysis were investigated in terms of UV absorbance and COD measurements for a wide range of initial DCF concentrations (5-80 mg L−1) and photocatalyst loadings (0.2-1.6 g TiO2 L−1) in a batch reactor system. A set of bioassays (Daphnia magna, Pseudokirchneriella subcapitata and Artemia salina) was performed to evaluate the potential detoxification of DCF. A pseudo-first-order kinetic model was found to fit well most of the experimental data, while at high initial DCF concentrations (40 and 80 mg L−1) and at 1.6 g TiO2 L−1 photocatalyst loading a second-order kinetic model was found to fit the data better. The toxicity of the treated DCF samples on D. magna and P. subcapitata varied during the oxidation, probably due to the formation of some intermediate products more toxic than DCF. Unicellular freshwater algae was found to be very sensitive to the treated samples as well as the results from D. magna test were consistent to those of algae tests. A. salina was not found to be sensitive under the investigated conditions. Finally, UV absorbance analysis were found to be an useful tool for a fast and easy to perform measurement to get preliminary information on the organic intermediates that are formed during oxidation and also on their disappearance rate.  相似文献   

8.
More stringent legislation on dissolved organic matter (DOM) urges the drinking water industry to improve in DOM removal, especially when applied to water with high dissolved organic carbon (DOC) contents and low turbidity. To improve conventional processes currently used in drinking water treatment plants (DWTPs), the performances of a hybrid membrane bioreactor containing fluidised activated carbon were investigated at the DWTP of Rennes. Preliminary results showed that the residual DOC was the major part of the non-biodegradable fraction. In order to increase the global efficiency, an upstream oxidation step was added to the process. Ozone was chosen to break large molecules and increase their biodegradability. The first step consisted of carrying out lab-scale experiments in order to optimise the necessary ozone dose by measuring the process yield, in terms of biodegradable dissolved organic carbon (BDOC). Secondly, activated carbon adsorption of the DOC present in ozonated water was quantified. The whole process was tested in a pilot unit under field conditions at the DWTP of Rennes (France). Lab-scale experiments confirmed that ozonation increases the BDOC fraction, reduces the aromaticity of the DOC and produces small size organic compounds. Adsorption tests led to the conclusion that activated carbon unexpectedly removes BDOC first. Finally, the pilot unit results revealed an additional BDOC removal (from 0.10 to 0.15 mg L−1) of dissolved organic carbon from the raw water considered.  相似文献   

9.
Degradation kinetics and mineralization of an urban wastewater treatment plant effluent contaminated with a mixture of pharmaceutical compounds composed of amoxicillin (10 mg L−1), carbamazepine (5 mg L−1) and diclofenac (2.5 mg L−1) by TiO2 photocatalysis were investigated. The photocatalytic effect was investigated using both spiked distilled water and actual wastewater solutions. The process efficiency was evaluated through UV absorbance and TOC measurements. A set of bioassays (Daphnia magna, Pseudokirchneriella subcapitata and Lepidium sativum) was performed to evaluate the potential toxicity of the oxidation intermediates. A pseudo-first order kinetic model was found to fit well the experimental data. The mineralization rate (TOC) of the wastewater contaminated with the pharmaceuticals was found to be really slow (t1/2 = 86.6 min) compared to that of the same pharmaceuticals spiked in distilled water (t1/2 = 46.5 min). The results from the toxicity tests of single pharmaceuticals, their mixture and the wastewater matrix spiked with the pharmaceuticals displayed a general accordance between the responses of the freshwater aquatic species (P. subscapitata > D. magna). In general the photocatalytic treatment did not completely reduce the toxicity under the investigated conditions (maximum catalyst loading and irradiation time 0.8 g TiO2 L−1 and 120 min respectively).  相似文献   

10.
Groundwater and core sediments of two boreholes (to a depth of 50 m) from the Chapai-Nawabganj area in northwestern Bangladesh were collected for arsenic concentration and geochemical analysis. Groundwater arsenic concentrations in the uppermost aquifer (10-40 m of depth) range from 2.8 μg L−1 to 462.3 μg L−1. Groundwater geochemical conditions change from oxidized to successively more reduced, higher As concentration with depth. Higher sediment arsenic levels (55 mg kg−1) were found within the upper 40 m of the drilled core samples. X-ray absorption near-edge structure spectroscopy was employed to elucidate the arsenic speciation of sediments collected from two boreholes. Environmental scanning electron microscopy and transmission X-ray microscopy were used to investigate the characteristics of FeOOH in sediments which adsorb arsenic. In addition, a pH-Eh diagram was drawn using the Geochemist's Workbench (GWB) software to elucidate the arsenic speciation in groundwater. The dominant groundwater type is Ca-HCO3 with high concentrations of As, Fe and Mn but low levels of NO3 and SO42−. Sequential extraction analysis reveals that Mn and Fe hydroxides and organic matter are the major leachable solids carrying As. High levels of arsenic concentration in aquifers are associated with fine-grained sediments. Fluorescent intensities of humic substances indicate that both groundwater and sediments in this arsenic hotspot area contain less organic matter compared to other parts of Bengal basin. Statistical analysis clearly shows that As is closely associated with Fe and Mn in sediments while As is better correlated with Mn in groundwater. These correlations along with results of sequential leaching experiments suggest that reductive dissolution of MnOOH and FeOOH mediated by anaerobic bacteria represents an important mechanism for releasing arsenic into the groundwater.  相似文献   

11.
Pilot-scale struvite crystallization tests using anaerobic effluent from potato processing industries were performed at three different plants. Two plants (P1 & P2) showed high phosphate removal efficiencies, 89 ± 3% and 75 ± 8%, resulting in final effluent levels of 12 ± 3 mg PO43−-P L−1 and 11 ± 3 mg PO43−-P L−1, respectively. In contrast, poor phosphate removal (19 ± 8%) was obtained at the third location (P3). Further investigations at P3 showed the negative effect of high Ca2+/PO43−-P molar ratio (ca. 1.25 ± 0.11) on struvite formation. A full-scale struvite plant treating anaerobic effluent from a dairy industry showed the same Ca2+ interference. A shift in the influent Ca2+/PO43−-P molar ratio from 2.69 to 1.36 resulted in average total phosphorus removal of 78 ± 7%, corresponding with effluent levels of 14 ± 4 mg Ptotal L−1 (9 ± 3 mg PO43−-P L−1). Under these conditions high quality spherical struvite crystals of 2-6 mm were produced.  相似文献   

12.
Hyun-Seok Son 《Water research》2009,43(5):1457-464
In this study, the degradation mechanism of 1,4-dioxane using zero-valent iron (Fe0) in the presence of UV light was investigated kinetically. The degradation of 1,4-dioxane in Fe0-only, photolysis, and combined Fe0 and UV reactions followed the kinetics of a pseudo-first-order model. The degradation rate constant (19 × 10−4 min−1) in the combined reaction with UV-C (4.2 mW cm−2) and Fe0 (5 mg L−1) was significantly enhanced compared to Fe0-only (4.8 × 10−4 min−1) and photolytic reactions (2.25 × 10−4 min−1), respectively. The removal efficiency of 1,4-dioxane in combined reaction with Fe0 and UV within 4 h was enhanced by increasing UV intensity at UV-C region (34% at 4.2 mW cm−2 and 89% at 16.9 mW cm−2) comparing with the removal in the combined reaction with Fe0 and UV-A (29% at 2.1 mW cm−2, and 33% at 12.6 mW cm−2). It indicates that 1,4-dioxane was degraded mostly by OH radicals in the combined reaction. The degradation patterns in both Fe0-only and combined reactions were well fitted to the Langmuir-Hinshelwood model, implying that adsorption as well as the chemical reaction occurred. The transformation of Fe0 to Fe2+ and Fe3+ was observed in the Fe0-only and combined reactions, and the transformation rate of Fe0 was improved by UV irradiation. Furthermore, the reduction of Fe3+ was identified in the combined reaction, and the reduction rate was enhanced by an increase of UV energy. Our study demonstrated that the enhancement of 1,4-dioxane removal rate occurred via an increased supply of OH radicals from the Fenton-like reaction induced by the photolysis of Fe0 and H2O, and with producing less sludge.  相似文献   

13.
This study reports on the relationship between copper (Cu) behavior and organic matter (OM) transformation along the turbidity gradient in the freshwater reaches of the Gironde Estuary. During a one-year survey, surface water and suspended particulate matter (SPM) were sampled at least monthly at three sites along the Garonne Branch, representing the main fluvial branch of the Gironde Estuary. Additionally, a longitudinal high resolution profile was sampled along the Garonne Branch, covering the turbidity gradient from the river water endmember to the maximum turbidity zone (MTZ). Seasonal variability and spatial distribution of Cu in both the dissolved phases (< 0.2 μm, Cu0.2 and < 0.02 μm, Cu0.02) and particulate Cu (CuP) clearly suggested Cu0.2 addition during summer, that increased the Cu0.2 concentrations by a factor ~ 2, mainly manifested by an increase in the Cu0.02 fraction. At the annual timescale (2004), this internal Cu reactivity increased Cu0.02 fluxes in the Garonne Branch by ~ 20% (3.6 t year−1), with the equivalent of ~ 2.9 t year−1 derived from the CuP fraction and ~ 0.7 t year−1 from the colloidal (0.02-0.2 μm) fraction, without involving and/or affecting the CuC18 (hydrophobic metal-organic complexes) fraction.Combining data on Cu speciation with the results obtained by several independent techniques (DOC and POC measurements, 3D-fluorescence, and TEM) suggested close relationships between Cu behavior and OM transformation/restructuration along the turbidity gradient in the Garonne Branch. The observed Cu0.02 addition was related to increasing humification (humification index HIX increased from 9 to 12, network formation) and labile OM degradation (Iγ/Iα ratio decreased from 0.70 to 0.44), going along with decreasing DOC and POC concentrations. Mass-balances suggest that in the studied system, degradation of OM may account for the release of ~ 25 μmol potentially bioaccessible Cu0.02 per mole of particulate organic carbon mineralized.  相似文献   

14.
The changes in the amounts and composition of dissolved organic matter (DOM) following long-term peat restoration are unknown, although this fraction of soil organic matter affects many processes in such ecosystems. We addressed this lack of knowledge by investigating a peatland in south-west Germany that was partly rewetted 20 years ago. A successfully restored site and a moderately drained site were compared, where the mean groundwater levels were close to the soil surface and around 30 cm below surface, respectively. The concentrations of dissolved organic carbon (DOC) at 4 depths were measured over one year. The specific absorbance was measured at 280 nm and the fluorescence spectra were used to describe the aromaticity and complexity of DOM.The investigations showed that 20 years of peatland restoration was able to create typical peatland conditions. The rewetted site had significantly lower DOC concentrations at different depths compared to the drained site. The specific UV absorbance showed that the rewetted site had a lower level of aromatic DOM structures. The decreasing specific UV absorbance might indicate an increasing contribution of small organic molecules to DOM. It was hypothesized that the decreasing DOC concentrations and the relative enrichment of small, readily degradable organic molecules, reflect the slower decomposition of organic matter after the re-establishment of the water table. Seasonal trends provided substantial evidence for our hypothesis that reduced DOC concentrations were caused by reduced peat decomposition. During summer, the elevated DOC values were accompanied by an increase in DOM aromaticity and complexity. Our results demonstrated a close link between C mineralization and DOC production. We concluded that long-term peatland restoration in the form of the successful re-establishment of the water table might result in reduced peat decomposition and lower DOC concentrations. The restoration of peatlands seems to have a positive impact on C sequestration.  相似文献   

15.
Water samples were collected from 20 wetland, river and lake sites across Eastern Ontario and Western Quebec to investigate the distribution of methylmercury (MeHg) associated with various size fractions of dissolved organic matter (DOM). Tangential Flow UltraFiltration (TUF) was used to fractionate DOM by nominal molecular size (<0.2 μm, <300 kDa, <30 kDa, <5 kDa and <1 kDa). DOM fluorescence (DOM FL) and absorbance (DOC Abs) were used to quantify DOM photoreactivity and aromaticity in each sample. Significant differences in the size-associated distribution of MeHg, Dissolved Organic Carbon (DOC), DOM FL, and DOM Abs were observed between wetlands, rivers, and lakes. The low molecular weight (LMW) fraction (<5 kDa) in wetlands contained the majority of MeHg (70.0 ± 13.8%), DOC (56.1 ± 9.4%), and DOM FL (77.4 ± 7.5%). DOM FL was also high in the LMW fraction for rivers (60.6 ± 25%) and lakes (75.2 ± 16.9%). Mean MeHg concentrations in the LMW fraction of lakes (41 ± 26 pg L− 1) and rivers (32 ± 19 pg L− 1) were substantial but much lower than wetlands. Rivers had the highest percentage of methylmercury (38.0 ± 23.5%) in the particulate (>0.2 µm) fraction. This research highlights the importance of low molecular weight dissolved organic matter in methylmercury fate. For example, a large proportion of MeHg was found in the LMW weight fractions (mean = 47.3 ± 25.4%) of the wetlands, rivers, and lakes in this study.  相似文献   

16.
Ang WS  Elimelech M 《Water research》2008,42(16):4393-4403
Effluent organic matter (EfOM) contributes significantly to organic fouling of reverse osmosis (RO) membranes in advanced wastewater reclamation. In this study, the effect of feed solution chemistry (solution pH and Ca2+ concentration) on the fouling of RO membranes by octanoic acid—selected to represent fatty acids in EfOM—is investigated. Crossflow fouling experiments demonstrate that RO membrane fouling is much more significant at solution pH below the pKa of the octanoic acid (pKa = 4.9) than at an elevated pH. Octanoic acid permeates across the membranes more readily at solution pH below its pKa than at elevated pH. At pH below the octanoic acid pKa, fouling behavior is not affected by calcium ions, whereas at elevated pH, the rate of flux decline decreases with higher calcium ion concentration. The effect of calcium on the fouling behavior was further verified from foulant-foulant adhesion forces, determined by atomic force microscopy (AFM) force measurements under solution chemistries identical to those of the crossflow fouling experiments. To investigate the implications of octanoic acid fouling for wastewater reclamation, the effect of octanoic acid on membrane fouling by a combination of organic foulants in the presence of calcium ions is studied. At a solution chemistry simulating that of typical wastewater effluents, the addition of octanoic acid to a feed solution containing alginate, bovine serum albumin, and Suwannee River natural organic matter, does not enhance membrane fouling behavior. This observation could be attributed to the significant contribution of the alginate-calcium complexes within the fouling layer to the total membrane resistance.  相似文献   

17.
The fate of six phthalates: dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), butyl benzyl phthalate (BBP), bis (2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP) was investigated throughout wastewater treatment processes in the wastewater treatment plant (WWTP) of Marne Aval (France). That plant treats wastewater from a highly populated area and was used as a pilot station for development of nitrification processes.In wastewater, at each step of treatment, DEHP was always the major compound (9 to 44 µg L− 1), followed by DEP (1.6 to 25 µg L− 1). Other phthalates averaged 1 µg L− 1 and DnOP remained close to the detection limit in nearly all cases.In sludge, the prevailing compound was also DEHP (72 µg g− 1) which is consistent with its tendency to get sorbed upon suspended matter (SM). DnOP came in third, in relation with its resistance to biodegradation.For the studied period, the removal efficiency of DEHP from wastewater was about 78%. That removal seemed to proceed rather from particle settling than from biodegradation. A highly significant correlation (p < 0.001) was found between DEHP and SM concentrations throughout treatment processes. The other compounds: DMP, DEP, DnBP and BBP, displayed satisfactory efficiencies ranging from 68 to over 96% for the lighter ones obviously more easily degraded.Under rainy periods, the plant discharge impact upon Marne River quality in terms of phthalate fluxes, appeared to be minor as compared to the amount brought by the storm overflows in the same area. Downstream of the WWTP discharge, DEHP concentration remained under the European norm for surface water (NQE: 1.3 µg L− 1).Our study documents the behaviour of phthalate esters throughout a WWTP which treatment device is used by 55% of the WWTP in the river Seine basin.  相似文献   

18.
A comprehensive study was conducted in July 2006, January 2007 and March 2007 to determine the impacts of some major physicochemical parameters on the level of mercury (Hg) in Puding Reservoir, Guizhou, China. The concentrations of Hg species in the summer campaign were significantly higher (p < 0.01, generally 2 to 3 times higher) than those in the winter and spring campaigns, and no statistical differences were found between the same parameters for the latter two campaigns (p > 0.05). Ancillary parameters including suspended particulate matter (SPM), dissolved organic carbon (DOC), temperature (T), dissolved oxygen (DO), pH, nitrate (NO3) and chloride (Cl) were also measured. During the sampling campaign in July 2006, average values for SPM, DOC, T, and NO3 were all higher compared to the other two campaigns, which suggested a similar seasonal trend between these parameters and Hg species. Seasonal variability may be related to increased runoff. High runoff volume due to abundant precipitation in the summer carried Hg-laden particulates into the reservoir, whereas there was less precipitation in the winter and spring when Hg levels were lower. Increased agricultural activity in the summer season also increased Hg levels in Puding Reservoir.  相似文献   

19.
The degradation of geosmin and 2-methylisoborneol (2-MIB) by UV irradiation at different wavelengths was investigated under varying boundary conditions. The results showed that conventional UV radiation (254 nm) is ineffective in removing these compounds from water. In contrast to the usual UV radiation UV/VUV radiation (254 + 185 nm) was more effective in the removal of the taste and odour compounds. The degradation could be described by a simple pseudo first-order rate law with rate constants of about 1.2 × 10−3 m2 J−1 for geosmin and 2-MIB in ultrapure water. In natural water used for drinking water abstraction the rate constants decreased to 2.7 × 10−4 m2 J−1 for geosmin and 2.5 × 10−4 m2 J−1 for 2-MIB due to the presence of NOM. Additionally, the formation of the by-product nitrite was studied. In the UV/VUV irradiation process up to 0.6 mg L−1 nitrite was formed during the complete photoinitiated oxidation of the odour compounds. However, the addition of low ozone doses could prevent the formation of nitrite in the UV/VUV irradiation experiments.  相似文献   

20.
The intensive agricultural systems in the Midwestern United States can enrich surface waters with nutrients. Agricultural drainage ditches serve as the first and second order streams throughout much of this region, as well as other highly productive agricultural areas in humid regions throughout the world. This project was conducted to evaluate in-stream processing of soluble P (SP) in agricultural drainage ditches. Soluble P injection studies were conducted at seven sites along three drainage ditches (298 to 4300 ha drainage area), and one site on a third-order stream that receives the discharge from the agricultural ditches (19,000 ha drainage area) by increasing the SP concentration in the ditch water by approximately 0.25 mg L− 1. Sediments collected from smaller watersheds contained greater amounts of Mehlich 3 and exchangeable P (ExP), silt and clay size particles, and organic matter. Phosphorus uptake lengths (Snet) ranged from 40 to 1900 m, and SP uptake rates (U) ranged from 0.4 to 52 mg m− 2 h− 1. Phosphorus Snet was correlated with ditch geomorphological (i.e. width) and sediment properties (i.e. organic matter, ExP, and equilibrium P concentration; r2 = 1.00, P < 0.001), indirect drainage in the watershed (r2 = 0.92, P < 0.001), and the amount of small grains, forest, urban area, alfalfa and corn (r2 = 1.00, P < 0.0001). Agricultural drainage ditches actively process nutrients and could potentially be managed to optimize this processing to minimize SP export from these landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号