首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The reduction of hexavalent chromium (Cr(VI)) by zero-valent iron (ZVI) is self-inhibiting in near natural groundwater because insulating Fe(III)-Cr(III) (oxy)hydroxide film forms on the ZVI surface during the reaction. This study tries to overcome this deficiency by coating the surface of ZVI with copper to form copper-iron bimetallic particles. The Cr(VI) removal rate by ZVI rose significantly after the copper coating was applied. The copper loading needed for enhancing Cr(VI) removal was much higher than that needed for enhancing removal of chlorinated organic compounds or other oxidative contaminants, because of the higher oxidation potential of Cr(VI). The results of X-ray photoelectron spectroscopy (XPS) indicate that coating copper onto the surface of ZVI can not only increase the deepness of the oxidation film but also increase the oxidation state of iron in the film. This phenomenon means higher Cr(VI) removal capacity per unit weight of ZVI.  相似文献   

2.
The removal of a reactive color, Cibacron Yellow LS-R, from aqueous solutions by adsorption onto hydrotalcite particles is investigated using batch rate experiments. Measurements are performed at various initial color concentrations, solid loads, pH values and ionic backgrounds (dissolved NaCl). The speed of agitation and the temperature inside the batch adsorber are also varied within a practical range of values. It is shown that the sorption capacity is relatively high for most experimental conditions so hydrotalcite may be considered as a suitable sorbent for this application. The probable mechanism of the process is investigated by a number of homogeneous and heterogeneous reaction kinetic models as well as diffusion kinetic models. It is found that no single kinetic model can fully describe the sorption process at all times. At least three independent rate-controlling mechanisms appear to compete each other and dominate the different stages of sorption.  相似文献   

3.
Mechanism of hexavalent chromium adsorption by persimmon tannin gel   总被引:4,自引:0,他引:4  
Nakajima A  Baba Y 《Water research》2004,38(12):2859-2864
Mechanism of chromium adsorption by the persimmon tannin (PT) gel was examined. The PT gel can adsorb Cr highly effectively from aqueous solutions containing Cr(VI), while it adsorbed far smaller amounts of Cr from the solution containing Cr(III). The maximum Cr adsorption from the Cr(VI) solution occurred at pH 3. The Cr adsorption from the Cr(VI) solution by the PT gel was rapid, was faster than VO2+ and Fe3+ adsorptions, and was obeyed the Langmuir adsorption isotherm (Qe= 5.27 mmol g(-1) and K= 16.2 mM). The gel adsorbed Cr from the Cr(VI) solution (pH 1 and 3) showed no ESR signal of Cr(III), while the ESR signal of Cr(III) was observed in the residual solution at pH 1. Hexavalent chromium was, therefore, adsorbed on the PT gel through the esterification of chromate with catechol group. In other words, Cr(VI) should combine with catechol as a hard acid, CrO2(2+) cation. Through the treatment of a Cr(VI) solution with the PT gel, chromium should be recovered as a Cr(IV)-tannin complex at pH 3 or a Cr(III) solution at pH 1 or lower pH region.  相似文献   

4.
Park D  Yun YS  Jo JH  Park JM 《Water research》2005,39(4):533-540
When synthetic wastewater containing Cr(VI) was placed in contact with the dead fungal biomass of Aspergillus niger, the Cr(VI) was completely removed from aqueous solution, whereas Cr(III), which was not initially present, appeared in aqueous solution. Desorption and X-ray photoelectron spectroscopy (XPS) studies showed that most of the Cr bound on the biomass was in trivalent form. These results indicated that the main mechanism of Cr(VI) removal was a redox reaction between Cr(VI) and the dead fungal biomass, which is quite different from previously reported mechanisms. The influences of contact time, pH, Cr(VI) concentration, biomass concentration and temperature on Cr(VI) removal were also evaluated. The Cr(VI) removal rate increased with a decrease in pH and with increases in Cr(VI) concentration, biomass concentration and temperature. Although removal kinetics was dependent on the experimental conditions, Cr(VI) was completely removed in the aqueous solution. In conclusion, a new mechanism of Cr(VI) removal by the dead fungal biomass has been proposed. From a practical viewpoint, this abundant and inexpensive dead fungal biomass has potential application in the conversion of toxic Cr(VI) into less toxic or nontoxic Cr(III).  相似文献   

5.
Relatively limited information is available regarding the impacts of temperature on the adsorption kinetics and equilibrium capacities of granular ferric hydroxide (GFH) for arsenic (V) and arsenic (III) in an aqueous solution. In general, very little information is available on the kinetics and thermodynamic aspects of adsorption of arsenic compounds onto other iron oxide-based adsorbents as well. In order to gain an understanding of the adsorption process kinetics, a detailed study was conducted in a controlled batch system. The effects of temperature and pH on the adsorption rates of arsenic (V) and arsenic (III) were investigated. Reaction rate constants were calculated at pH levels of 6.5 and 7.5. Rate data are best described by a pseudo first-order kinetic model at each temperature and pH condition studied. At lower pH values, arsenic (V) exhibits greater removal rates than arsenic (III). An increase in temperature increases the overall adsorption reaction rate constant values for both arsenic (V) and arsenic (III). An examination of thermodynamic parameters shows that the adsorption of arsenic (V) as well as arsenic (III) by GFH is an endothermic process and is spontaneous at the specific temperatures investigated.  相似文献   

6.
The sorptive removal of hexavalent chromium from aqueous solutions by calcined Mg-Al-CO(3) hydrotalcite was investigated in a batch mode. The influence of agitation speed, solution pH, initial chromium concentration, sorbent concentration and temperature has been tested in kinetic runs. Three kinetic models have been evaluated to fit the experimental data: the pseudo-first order, the modified-second order and the Elovich equation. It was shown that the first-order model could best describe the sorption kinetics. A Freundlich isotherm was used to fit equilibrium experiments. Hydrotalcite presents a sorption capacity of approximately 120 mg Cr/g, under the investigated experimental conditions. The calculated activation energy for process studied was around 40 kJ/mol.  相似文献   

7.
The adsorption capacity of ‘waste’ Fe(III)/Cr(III) hydroxide for removal of quinol at varying agitation time, quinol concentration, adsorbent dose, pH and temperature was investigated by batch method. The Langmuir isotherm was found to represent the equilibrium sorption data well and the adsorption capacity was found to be 24.4 mg g?1 and 28.2 mg g?1 for untreated and pre‐treated adsorbent, respectively. Adsorption followed second‐order kinetics. Adsorption was maximum and uniform in the pH range 4.0–10.0 and 6.0–10.0 for untreated and pre‐treated adsorbent, respectively. The adsorption was endothermic in nature. Application of the adsorbent to the treatment of real effluent was demonstrated.  相似文献   

8.
Heavy-metal removal from aqueous solution by fungus Mucor rouxii   总被引:18,自引:0,他引:18  
Yan G  Viraraghavan T 《Water research》2003,37(18):4486-4496
Biosorption of lead, cadmium, nickel and zinc by live and dead Mucor rouxii biomass treated with NaOH was studied over a range of pH. In the case of dead biomass, low pH resulted in a decrease in the biosorption capacity. At pH 3.0 or less, the inhibition of biosorption of metal ions took place. At pH 4.0 or higher, the biosorption of metal ions increased sharply. Ho's pseudo-second-order model described the biosorption kinetics better than the Lagergren model. Live biomass had high biosorption capacity, i.e. 35.69, 11.09, 8.46 and 7.75 mg/g at pH 5.0 for Pb(2+), Ni(2+), Cd(2+) and Zn(2+), respectively. The dead biomass adsorbed metal ions in the order of Pb(2+), Zn(2+), Cd(2+) and Ni(2+), with the biosorption capability of 25.22, 16.62, 8.36 and 6.34 mg/g at pH 5.0, respectively. At pH 6.0, the capacity of the dead biomass increased to 53.75, 53.85, 20.31 and 20.49 mg/g, respectively. For bi- or multi-metal ion adsorption, biosorption capacity of individual metal ion was reduced in the presence of other metal ions, but the total biosorption capacity increased, indicating the capability of M. rouxii biomass in adsorbing multi-metal ions. In addition, M. rouxii biomasses cultured with different media exhibited the same level of capacity to bind metal ions. Metal ions adsorbed by the biomass could be eluted effectively with HNO(3), while distilled water demonstrated negligible metal elution capability. Regeneration of the biomass with NaOH regained or enhanced the biosorption capacity even after five cycles of adsorption-elution-regeneration.  相似文献   

9.
Sun Q  Yang L 《Water research》2003,37(7):1535-1544
Modified peat was prepared by mixing thoroughly raw peat with sulfuric acid, and modified peat-resin particle was obtained, by mixing modified peat with solutions of polyvinylalcohol (PVA) and formaldehyde. In this paper, the adsorption of Basic Magenta and Basic Brilliant Green onto modified peat-resin particle is examined. The adsorption isotherm showed that the adsorption of basic dyes on modified peat-resin particle deviated from the Langmuir and Freundlich equations. The pseudo-first order, pseudo-second order and intraparticle diffusion models were used to fit the experimental data. By comparing the standard deviation, it was found that the intraparticle diffusion model could be used to well describe the adsorption of two basic dyes on modified peat-resin particle. According to the change of intraparticle diffusion parameter, the adsorption processes could be divided into different stages. The kinetics experiment also indicated that initial dye concentrations, particle dose and particle size could affect the adsorption processes of basic dyes.  相似文献   

10.
Defluoridation from aqueous solutions by granular ferric hydroxide (GFH)   总被引:1,自引:0,他引:1  
This research was undertaken to evaluate the feasibility of granular ferric hydroxide (GFH) for fluoride removal from aqueous solutions. Batch experiments were performed to study the influence of various experimental parameters such as contact time (1 min-24 h), initial fluoride concentration (1-100 mg L−1), temperature (10 and 25 °C), pH (3-12) and the presence of competing anions on the adsorption of fluoride on GFH. Kinetic data revealed that the uptake rate of fluoride was rapid in the beginning and 95% adsorption was completed within 10 min and equilibrium was achieved within 60 min. The sorption process was well explained with pseudo-first-order and pore diffusion models. The maximum adsorption capacity of GFH for fluoride removal was 7.0 mg g−1. The adsorption was found to be an endothermic process and data conform to Langmuir model. The optimum fluoride removal was observed between pH ranges of 4-8. The fluoride adsorption was decreased in the presence of phosphate followed by carbonate and sulphate. Results from this study demonstrated potential utility of GFH that could be developed into a viable technology for fluoride removal from drinking water.  相似文献   

11.
The adsorption of Reactive Red 120 dye from aqueous solutions by using nano-alumina has been investigated. The batch adsorption studies were carried out to determine the impact of pH, contact time, concentration of dye, and the adsorbent dose on adsorption process. The maximum adsorption efficiency was observed at pH 3. However with an increase of the adsorbent dose, the dye removal efficiency increased, while the amount of dye adsorbed per unit mass (mg/g) decreased. A pseudo-second-order model best described the adsorption kinetics of the specified dye onto nano-alumina. In this case the Langmuir isotherm model appeared to be most suitable. Findings of the present study reveal that nano-alumina can be an effective adsorbent for the removal of Reactive Red 120 from aqueous solutions.  相似文献   

12.
Genz A  Kornmüller A  Jekel M 《Water research》2004,38(16):3523-3530
The advanced phosphorus (P) removal by adsorption was studied for its suitability as a post-treatment step for membrane bioreactor (MBR) effluents low in P concentration and particle content. Two commercial adsorbents, granulated ferric hydroxide (GFH) and activated aluminium oxide (AA), were studied in batch tests and lab-scale filter tests for P adsorption in MBR filtrates. GFH showed a higher maximum capacity for phosphate and a higher affinity at low P concentrations compared to AA. Competition by inorganic ions was negligible for both adsorbents at the original pH (8.2). When equilibrium P concentrations exceeded 2 mg L(-1) in the spiked MBR filtrates, a precipitation of calcium phosphates occurred additionally to adsorption. During column studies the effluent criteria of 50 microgL(-1) P was reached after a throughput of 8000 bed volumes for GFH and 4000 for AA. Dissolved organic carbon appears to be the strongest competitor for adsorption sites. A partial regeneration and reloading of both adsorbents could be achieved by the use of sodium hydroxide.  相似文献   

13.
Adsorption on activated carbon is currently the most frequently used technology to remove organic chlorinated pollutants from wastewaters. The present study examines the ability of five commercially available types of activated carbon to remove organic chlorinated compounds from the effluent of a chemical plant. The various types were tested on the basis of Freundlich adsorption isotherms for 14 pure organic chlorinated compounds, of molecular weight ranging from that of dichloromethane (MW=84.93 gmol(-1)) to hexachlorobenzene (MW=284.78 gmol(-1)). The best was selected and used in a laboratory fixed-bed column to assess its removal efficiency with respect to the tested organic chlorinated compounds. Removal efficiency was always higher than 90%. These results provide information necessary to optimize scale-up from the pilot plant to the real one.  相似文献   

14.
In this study, the removal of hexavalent and trivalent chromium ions from binary aqueous solutions by composite alginate-goethite beads was investigated in a batch mode. Equilibrium sorption experiments were carried out at different temperatures and pH values. The data were correlated with Langmuir and Freundlich equations. The thermodynamic parameters calculated were: change in free energy, in enthalpy, in entropy and the heat of adsorption. The influence of mixing rate, sorbent concentration and sorbent particle size was studied at kinetic runs. The effective diffusion coefficients were evaluated by employing the homogeneous diffusion model and the shrinking core model for hexavalent and trivalent chromium, respectively. Desorption experiments were conducted by employing various eluants showed that the loaded material could be regenerated satisfactorily.  相似文献   

15.
Zeng L  Li X  Liu J 《Water research》2004,38(5):1318-1326
This study explored the feasibility of utilizing industrial waste iron oxide tailings for phosphate removal in laboratory experiments. The experimental work emphasized on the evaluation of phosphate adsorption and desorption characteristics of the tailing material. The adsorption isotherm, kinetics, pH effect and desorption were examined in batch experiments. Five isotherm models were used for data fitting. The three-parameter equations (Redlich-Peterson and Langmuir-Freundlich) showed more applicability than the two-parameter equations (Freundlich, Langmuir and Temkin). A modified equation for calculation of the separation factor using the Langmuir-Freundlich equation constants was developed. The initial phosphate adsorption on the tailings was rapid. The adsorption kinetics can be best described by either the simple Elovich or power function equation. The phosphate adsorption on the tailings tended to decrease with an increase of pH. A phosphate desorbability of approximately 13-14% was observed, and this low desorbability likely resulted from a strong bonding between the adsorbed PO(4)(3-)and iron oxides in the tailings. Column flow-through tests using both synthetic phosphate solution and liquid hog manure confirmed the phosphate removal ability of the tailings. Due to their low cost and high capability, this type of iron oxide tailings has the potential to be utilized for cost-effective removal of phosphate from wastewater.  相似文献   

16.
C.P. Huang  M.H. Wu   《Water research》1977,11(8):673-679
The removal of chromium(VI) by activated carbon, filtrasorb 400, is brought by two major interfacial reactions: adsorption and reduction. Chemical factors such as pH and total Cr(VI) that affect the magnitude of Cr(VI) adsorption were investigated. The adsorption of Cr(VI) exhibits a peak value at pH 5–6. The particle size of carbon and the presence of cyanide species do not change the magnitude of chromium removal. The reduced Cr(VI), e.g. Cr(III) is less adsorbable than Cr(VI).The free energy of specific chemical interaction, ΔGchem was computed by the Gouy-Chapman-Stern-Grahame model. The average values of ΔGchem are −5.57 RT and −5.81RT, respectively, for Cr(VI) and CN. These values are significant enough to influence the overall magnitude of Cr(VI) and CN adsorption. Results also indicate that HCrO4 and Cr2O2−7 are the major Cr(VI) species involved in surface association.  相似文献   

17.
Halloysite nanotubes (HNTs), a low-cost available clay mineral, were tested for the ability to remove cationic dye, Neutral Red (NR), from aqueous solution. Natural HNTs used as adsorbent in this work were initially characterized by XRD, FT-IR, TEM and BET. The effect of adsorbent dose, initial pH, temperature, initial concentration and contact time were investigated. Adsorption increased with increase in adsorbent dose, initial pH, temperature and initial concentration. The equilibrium data were well described by both the Langmuir and Freundlich isotherm models. The maximum adsorption capacity was 54.85, 59.24 and 65.45 mg/g at 298, 308 and 318 K, respectively. Batch kinetic experiments showed that the adsorption followed pseudo-second-order kinetic model with correlation coefficients greater than 0.999. Thermodynamic parameters of ΔG0, ΔH0 and ΔS0 indicated the adsorption process was spontaneous and endothermic. The results above confirmed that HNTs had the potential to be utilized as low-cost and relatively effective adsorbent for cationic dyes removal.  相似文献   

18.
Magnetite nanoparticles were used to treat arsenic‐contaminated water. Because of their large surface area, these particles have an affinity for heavy metals by adsorbing them from a liquid phase. The results of the study showed that the maximum arsenic adsorption occurred at pH 2, with a value of approximately 3.70 mg/g for both As(III) and As(V) when the initial concentration of both arsenic species was maintained at 2 mg/L. The study showed that, apart from pH, the removal of arsenic from contaminated water also depends on the contact time, the initial concentration of arsenic, the phosphate concentration in the water and the adsorbent concentration. The results suggest that arsenic adsorption involved the formation of weak arsenic–iron oxide complexes at the magnetite surface. At a fixed adsorbent (magnetite nanoparticles) concentration of 0.4 g/L, percent arsenic removal decreased with increasing phosphate concentration. Magnetite nanoparticles removed <50% of arsenic from water containing >6 mg/L phosphate. In this case, an optimum design for achieving high arsenic removal by magnetite nanoparticles may be required.  相似文献   

19.
Environmental regulation, increased pressure on water resources and rising cost for wastewater discharges make wastewater treatment for recycling an essential investment for many industries. Ammonia is a major pollutant in many industrial and agricultural wastewaters, and its elimination is essential for wastewater to be reused or meeting local discharge standards. In this study, the removal of ammonia from dilute aqueous solution has been investigated using sweep gas and vacuum membrane distillation (SGMD and VMD). Factors that affect the separation process such as feed and air flow rates, vacuum degree and feed temperature have been investigated. Overall, mass transfer coefficients (Kov) were calculated, and the results indicated that Kov for VMD is higher than that for SGMD under similar operation. Overall, ammonia mass transfer coefficient up to 12.06 × 10?5 and 5.63 × 10?5 m/s can be achieved for VMD and SGMD, respectively. The ammonia removal efficiency was enhanced by increasing sweep gas flow rate or by decreasing downstream pressure.  相似文献   

20.
In this work, a bipolar packed bed electrolytic cell having steel Raschig rings behaving as electrodes has been used to remove chromium in the form of Cr(VI) from aqueous solutions and a sample of plating bath rinse.

Fe2+ ions generated at the anode side of the electrodes have reacted with OH ions generated at the cathode side forming Fe(OH)2 in this electrolytic cell.Cr(VI) have coprecipitated as Cr(OH)3 with Fe(OH)3 forming after the redox reaction between Fe(OH)2 and Cr(VI). Meanwhile other impurities have also removed besides Cr(VI) using this process. Removal rate of 100% for Cr(VI) has been achieved in the experiments done with different initial Cr(VI) concentration, duration of electrolysis and applied potential. Fully removal of Cr(VI) has also been achieved from the sample of plating bath rinse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号