首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 247 毫秒
1.
聚苯胺盐的合成及导电性能研究   总被引:3,自引:0,他引:3  
张柏宇  慕建群 《塑料工业》2004,32(11):8-10,24
用对甲苯磺酸作为掺杂剂对聚苯胺(PANI)进行掺杂,合成了导电聚苯胺盐(ES)。研究了掺杂剂用量、模压压力、模压温度、氧化剂用量对聚苯胺盐电导率的影响。结果表明:随着掺杂剂用量的增加,PANI的电导率也在不断的增大;当ES所受压力较高时,电导率提高;高温使PANI电导率上升;氧化剂与苯胺的最佳配比为1:1。  相似文献   

2.
乳液聚合法制备聚苯胺及其导电性能   总被引:15,自引:1,他引:14       下载免费PDF全文
以十二烷基苯磺酸(DBSA)为乳化剂,十六醇(CA)为助乳化剂,盐酸和十二烷基苯磺酸(DBSA)为掺杂剂, 过硫酸铵为引发剂,采用乳液聚合法合成了导电聚苯胺(PAn).研究了反应温度、反应时间及苯胺、十二烷基磺酸、十六醇、盐酸和过硫酸铵配比对聚苯胺电导率的影响.研究结果表明,较佳的工艺条件为:反应温度为7 ℃,反应时间为6 h,较佳的原料物质的量的比为苯胺∶十二烷基苯磺酸∶十六醇∶盐酸∶ 过硫酸铵=0.05∶0.028∶0.04∶0.01∶0.05;以十六醇为助乳化剂,采用十二烷基苯磺酸和盐酸为掺杂剂,提高了聚苯胺的导电性.同时对聚苯胺导电机理进行了分析.  相似文献   

3.
采用过硫酸铵(APS)为氧化剂在十二烷基苯磺酸(DBSA)微胶束中化学氧化制备纳米棒状聚苯胺;DBSA既起乳化剂也起掺杂剂的作用。制备的掺杂聚苯胺用红外光谱(FTIR)、紫外光谱(UV-vis)、X-射线衍射(XRD)和扫描电镜(SEM)进行了表征;透射电镜(TEM)下首次观察到了聚苯胺的有序排列结构,晶面间距为5.99 Å。考察了掺杂剂/苯胺、氧化剂/苯胺的摩尔比和反应温度、时间等对聚苯胺电导率影响,最高电导率达到了0.72 S/cm。透射电镜怎能看到5.99  相似文献   

4.
在不同磁场强度下,用过硫酸铵(APS)为氧化剂,磺基水杨酸(SSA)为掺杂剂合成导电聚苯胺(PAn),通过对PAn掺杂率的计算和电导率的测定,研究了氧化剂和掺杂剂浓度对PAn性能的影响。采用红外光谱、X射线衍射、粒径分析等研究了制备的PAn性能与结构。实验结果表明磁场对苯胺聚合的影响是正向的,氧化与掺杂条件的变化是影响电导率的重要因素。  相似文献   

5.
研究了用十二烷基苯磺酸(DBSA)、磺基水杨酸(SSA)、对氨基苯磺酸(ABSA)和柠檬酸(CA)4种有机酸作掺杂剂制备掺杂态聚苯胺DBSA-PANI、SSA-PANI、ABSA-PANI、CA-PANI的工艺,并制备了样品。经FT-IR和SEM分析表明:4种酸均具有掺杂态聚苯胺的特征吸收峰,其中DBSA-PANI和SSA-PANI的掺杂峰更明显;而ABSA和CA掺杂后的聚苯胺为微纳米粒子结构。大尺寸的有机酸离子掺杂在聚苯胺的链间,可更有效地减弱分子间的相互作用使聚苯胺溶解性提高,导电性增加。样品导电性能最好的是磺基水杨酸掺杂的聚苯胺,电导率接近1 S/cm。  相似文献   

6.
有机/无机酸复合掺杂导电聚苯胺的合成及性能研究   总被引:1,自引:0,他引:1  
采用化学氧化聚合法以苯胺为单体,过硫酸胺为氧化剂,在有机/无机混合酸的水溶液中合成导电聚苯胺.考察了有机/无机混合酸对聚苯胺性能的影响,并通过四探针、差热分析、红外光谱及拉曼光谱研究聚苯胺掺杂前后结构的变化.结果表明,当聚合温度为20℃、磺基水杨酸和硫酸的摩尔浓度比为0.25:1时,掺杂态聚苯胺电导率和溶解度达到最大值;其中电导率可达13.5 S·cm~(-1),在氮甲基吡咯烷酮(NMP)中溶解度可达85%.差热分析表明,有机/无机酸复合掺杂聚苯胺热稳定性较单一酸掺杂聚苯胺热稳定性有很大的提高;红外光谱和拉曼光谱表明;掺杂后聚苯胺具有导电性是因为其分子链上电荷离域形成了共轭结构.  相似文献   

7.
聚苯胺是一种非常有前途的导电聚合物。掺杂能提高聚苯胺的导电性、稳定性及其他性能,聚苯胺的掺杂受到了人们的广泛关注,尤其是有机酸的掺杂。有机酸种类众多且性能各异,能够使聚苯胺很多性质发生变化。本文重点综述了分别以单一有机酸、有机酸和金属氧化物、有机酸和无机酸、有机酸和其他无机物为掺杂剂合成聚苯胺的研究现状,详细介绍了各种掺杂态聚苯胺的性能及应用,简要介绍了影响聚苯胺性能的因素,并比较了不同掺杂态聚苯胺的优缺点。分析结果表明:与单一有机酸掺杂的聚苯胺相比,采用两种类型的掺杂剂共掺杂合成的聚苯胺具有更突出的性能及更大的应用前景。提出了采用两种或两种以上不同类型的掺杂剂共掺杂将是聚苯胺今后的主要研究方向。  相似文献   

8.
XPS对电导性纳米聚苯胺的性能表征   总被引:1,自引:1,他引:0  
以微乳液聚合法合成了导电性纳米聚苯胺(PANI),讨论了乳化剂的用量对聚苯胺电导率的影响,并用XPS对其性能进行了表征.结果表明:当十二烷基苯磺酸钠(SDBS)和苯胺(An)的摩尔比在1左右时, PANI的电导率有最大值;SDBS以两种方式存在,即掺杂PANI的SDBS和自由独立于PANI的SDBS;在一定酸性SDBS掺杂的条件下,(-N= NH )/N比率决定PANI的电导率.  相似文献   

9.
利用Wagner极化法研究了掺杂K4[Fe(CN)6]浅电子陷阱掺杂剂的溴碘化银T-颗粒晶体的电子电导率和空穴电导率,并与未掺杂的晶体样品进行对比,分别考察了实验温度、掺杂剂用量、掺杂位置等因素对实验结果的影响。结果表明,随掺杂剂用量的增加,晶体的电子电导率和空穴电导率都相应增加,这说明浅电子陷阱掺杂剂的掺杂有效地抑制了电子和空穴的复合、但其抑制作用却因掺杂位置的不同而不同,当掺杂量一定,掺杂剂掺在碘区附近时,晶体的电子电导率和空穴电导率的变化较明显。随着实验温度的增加,乳剂晶体的电子电导率和空穴电导率都下降。  相似文献   

10.
聚苯胺/聚乙烯醇微乳液导电涂料的研制及其性能的测试   总被引:3,自引:0,他引:3  
采用氧化聚合方法合成可溶性的聚苯胺/聚乙烯醇(PAn/PVA)复合导电涂料.研究了反应体系中聚苯胺的含量、反应时间、温度及酸浓度对导电涂料电导率的影响,确定了较佳的聚合反应条件,同时对其稳定性、导电性、力学性及其表面结构等进行了测试.结果表明,PAn/PVA导电涂料稳定性好,在空气中放置80h电导率无明显变化,涂料涂层的电导率最高可达4.57s/cm,加入环氧树脂可明显改善涂层的附着力.  相似文献   

11.
聚苯胺微乳液合成及其电致变色性   总被引:9,自引:0,他引:9  
用 (NH4) 2 S2 O8为氧化剂 ,在功能质子酸 水 正丁醇三元体系中 ,用微乳液法合成了聚苯胺。以聚苯胺的电导率和电致变色性能为标准 ,讨论了引发剂、DBSA、反应温度和反应时间对聚苯胺性能的影响 ,并对影响聚苯胺 /聚乙烯醇复合膜的性能因素作了初步探讨。结果表明 :与用常规乳液法合成的聚苯胺相比 ,用微乳液法合成的聚苯胺与聚乙烯醇所成的膜 ,其电导率提高了 2个数量级 ,电致变色性能也更好。  相似文献   

12.
聚对苯二甲酰对苯二胺(PPTA)与导电性聚苯胺(PAn)共混,得到一种既有PPTA的液晶性,又有PAn导电性的全新材料。PPTA和PAn以不同质量比共溶于浓硫酸后,可制成线材及薄膜,在1mol/1HCl水溶液中成型及拉伸。实验结果表明:PPTA的液晶性随PAn加入量的增加稍有减弱;线状PPTA/PAn的抗张强度随PAn混入量的增加而增大(从41.20N/mm~2增至44.80N/mm~2);断裂伸长与PAn混入量的多少无关(仍保持在4%),PPTA/PAn复合物的电导率随PAn含量的增加而升高,当PPTA:PAn=2:1(质量比)时,其电导率为2.3×10~(-1)S/cm,较纯PAn(3-5S/cm)小一个数量级,复合物的衍射图在2θ=22.7°及25°处有两个峰,分别与纯PPTA及统PAn的峰的位置相同,因此说明二者是以分子复合形式存在。SEM图表明复合物线材表面呈取向排列,且PPTA与PAn混合均匀。  相似文献   

13.
The conductive composites of polyaniline (PAn) and chlorosulfonated polyethylene (CSPE) were prepared by polymerization of aniline in the presence of CSPE, using a direct, one‐step in situ emulsion polymerization method. The polymerization of aniline was performed in an emulsion comprising water and xylene containing CSPE in the presence of dodecylbenzene sulfonic acid, which acts both as a surfactant and a dopant for PAn. The composites can be processed by either melt method (MP) or solution method (SP). Conductivity of the composites obtained by different processing methods shows different percolation thresholds: 14 wt % for MP samples and 22 wt % for SP samples. At the same content of PAn, the conductivity of MP composites is higher than that of SP composites. The relationships between mechanical properties and PAn content obtained by the two different processing methods were also investigated. When PAn content of MP samples is between 12 and 18 wt %, the composites behave like a thermoplastic elastomer with tensile strength at 6–8 MPa, ultimate elongation > 400% and permanent set < 30%. The conductivity of composites obtained by SP method after secondary doping with m‐cresol is about 6 orders of magnitude higher than the original at below 18 wt % PAn content and the percolation threshold for conductivity is lowered to 3 wt % PAn content. The composite shows no electrochromic activity in acidic solution of LiClO4 in propylene carbonate, but after secondary doping exhibits electrochromic activity even in neutral electrolyte. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 845–850, 2000  相似文献   

14.
A measuring method for a conductivity change through a current change during extension deformation or compression deformation of conductive elastomeric composites composed of a polyaniline (PAn)/styrene–butadiene–styrene (SBS) triblock copolymer was established. The composites were prepared by in situ emulsion polymerization of aniline in the presence of SBS using dodecylbenzene sulfonic acid (DBSA) as an emulsifier and a dopant. The product was melt‐processed (MP), solution‐processed (SP), or secondary doped with m‐cresol (SSP). The results for measurement of the conductivity change of the composites processed by the three different methods showed that for the MP and SP samples conductivity increases with extension, whereas for the SSP sample when the PAn content is lower than the percolation threshold, conductivity diminishes with increasing extension, but when the PAn content exceeds the percolation threshold value, conductivity followed an empirical equation with a maximum value. During compression, the conductivities of most of the MP, SP, and SSP samples exhibited a maximum value with change of the compression force, except the MP sample with a higher PAn content, the conductivity of which increased with the compression force. All the differences are related to their different morphological structures. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2156–2164, 2000  相似文献   

15.
以十二烷基苯磺酸为乳化剂及掺杂剂,由二甲苯及水组成乳液,在氯磺化聚乙烯存在下,采用一步原位乳液聚合法制备了聚苯胺/氯磺化聚乙烯(PAn/CSPE)导电复合材料。研究了用熔融法(MP)或溶液法(SP)加工复合物材料的导电性及力学性能,并进行了表征。结果表明,MP法制得的复合材料在导电性及力学性能方面优于SP法制得的复合材料;当PAn质量分数为12%~18%时,MP法复合材料呈现热塑性弹性体行为,拉伸强度为6~8MPa,扯断伸长率大于400%,永久变形小于30%。当PAn质量分数小于18%时,SP法复合材料用闻甲酚二次渗杂后的导电率比原复合材料高出6个数量级,且其导电渗滤阈值由PAn质量分数22%降至3%。  相似文献   

16.
Polyaniline (PAn), an important conducting polymer, was synthesized chemically. Percentage crystallinity of PAn on doping with various dopants (viz., hydrochloric acid, formic acid, iodine, methylene blue) has been investigated using wide-angle X-ray diffraction analysis. It is observed that percentage crystallinity (Xc %) for PAn increases after doping, and it is different for different dopants. The electrical conductivity measurements of these samples show that there is an increase in electrical conductivity with an increase in crystallinity. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
硅钨酸掺杂聚苯胺催化剂催化合成环己酮1,2-丙二醇缩酮   总被引:4,自引:0,他引:4  
采用回流法制备硅钨酸 (H4SiW12 O40 )掺杂聚苯胺 (PAn)催化剂H4SiW12 O40 /PAn。用环己酮和 1,2 丙二醇为原料合成环己酮 1,2 丙二醇缩酮 ,探讨了硅钨酸掺杂聚苯胺催化剂对缩醛反应的催化活性 ,较系统地研究了原料量比 ,催化剂用量 ,反应时间诸因素对产品收率的影响。实验表明 :硅钨酸掺杂聚苯胺是合成环己酮 1,2 丙二醇缩酮的良好催化剂 ,在n(环己酮 )∶n(1,2 丙二醇 ) =1∶14 ,催化剂用量为反应物料总质量的 1.6 % ,环己烷为带水剂 ,反应时间 5 0min的优化条件下 ,环己酮 1,2 丙二醇缩酮的收率可达 85 .6 %。  相似文献   

18.
In this study, two‐component free‐standing films were obtained by coating a polycarbonate (PC)‐coated Pt electrode first with polypyrrole (PPy) in an organic medium and then polyaniline (PAn) in an aqueous medium using an electrochemical technique. The amount of PPy and PAn contained in the films was controlled by varying the electrolysis time. The PC/PPy/PAn films were characterized by cyclic voltammetry, conductivity, FTIR and UV–visible spectrophotometry, and thermogravimetric analysis. The resistance change of the films was determined in the temperature range of ?15 to 120 °C and their temperature sensor properties were investigated. © 2002 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号