首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
低过热度浇注ZL101铝合金半固态组织研究   总被引:9,自引:0,他引:9  
刘政  胥锴  刘萍 《铸造》2006,55(8):842-846
采用低过热度浇注技术制备半固态ZL101铝合金,研究了冷却强度、保温时间、浇注温度对铸造显微组织的影响。研究结果表明,在液相线附近,冷却强度大,晶粒细小;随着保温时间的延长,晶粒变大,形状变得圆整,结晶组织均匀;浇注温度越高,晶粒越粗大;铸锭中心部位组织比边缘部位组织粗大,且均匀,球化明显。低过热度浇注可以获得理想的ZL101铝合金半固态浆料。半固态坯料重熔加热温度为585℃,保温30min,α-Al相逐渐变成球状,此时,晶粒平均等级圆直径为42.6μm,晶粒平均圆度为2.13。  相似文献   

2.
采用正交试验设计方法对半固态模锻ZL101铝合金车轮的热处理工艺进行了优化,并对车轮热处理后的组织性能进行了检测分析。结果表明,对车轮拉伸力学性能影响最明显的因素是时效时间,其次为固溶温度和固溶时间,最不明显的因素是时效温度。车轮的最优热处理工艺为535℃固溶6 h、180℃时效6 h。车轮热处理后的抗拉强度、屈服强度和伸长率分别为327.6 MPa、228.3 MPa和7.8%。  相似文献   

3.
刘政  石凯  陈明 《铸造》2009,58(7)
利用低过热度浇注工艺制备了ZL101-Sc铝合金半固态浆料,研究了Sc对半固态合金初生α-Al形貌的影响.采用正交设计方法研究了半固态ZL101-Sc铝合金初生α-Al形貌的影响因素.结果表明,经Sc细化及低过热度浇注(620℃)获得的半固态ZL101初生球晶的最佳工艺条件为保温温度590℃,保温时间200 s,Sc加入量0.6%.此时其晶粒在铸态下的形状因子为0.95,等效圆直径为27.45 μm,其中保温温度是晶粒形貌和尺寸的最主要影响因素,可信度达95%;其次是Sc的加入量和保温时间.  相似文献   

4.
采用低温浇注和晶粒细化复合工艺制备半固态A356铝合金坯料,并在200T立式油压机上对半固态坯料进行触变模锻成形,研究了触变模锻件的组织与力学性能,并与液态模锻件进行了比较。结果表明:触变模锻件内部组织由球形α-Al晶粒和α+Si共晶组织组成,组织均匀致密,经T6热处理后抗拉强度和伸长率分别为317.6MPa和5.8%,比液态模锻件分别提高了13.6%和5.1%,表明触变模锻半固态A356铝合金件具有较好的热处理强化效果和较高的综合力学性能。  相似文献   

5.
采用低过热度铸造和触变锻造相结合的方法制备A356铝合金车轮,研究低过热度铸造A356铝合金坯料的组织、坯料二次加热组织演变规律和触变锻造车轮的组织与力学性能。结果表明:熔体在635℃浇注,可获得具有细小、均匀的非枝晶晶粒的A356铝合金坯料。坯料在600℃等温加热60min后,非枝晶晶粒可转变成球形晶粒,在750kN锻压力下半固态坯料可触变锻造成铝合金车轮。经T6热处理,A356铝合金车轮的抗拉强度和伸长率分别为327.6MPa和7.8%,高于铸造铝合金车轮的拉伸力学性能。将低过热度铸造与触变锻造工艺相结合,可以制备具有较高力学性能的铝合金车轮。  相似文献   

6.
ZL101A铝合金半固态连铸坯料的组织和力学性能   总被引:5,自引:0,他引:5  
用电磁搅拌水平连铸设备制备ZL101A铝合金半固态连铸坯料,获得了两种非种非树枝晶组织,一种是初晶α-Al呈短棒状的组织;另一种是初晶α-Al呈短棒状和等轴状的混合组织。对短棒状组织连铸坯料进行T6热处理及力学性能测试,结果表明热处理使用σb和δ提高。  相似文献   

7.
铝合金零件半固态模锻的应用及发展   总被引:8,自引:1,他引:7  
介绍了半固态模锻的实质及工艺过程;列举了半固态模锻铝合金零件的应用现状;阐述了半固态模锻工艺的优点。  相似文献   

8.
半固态模锻及其工业应用前景展望   总被引:2,自引:0,他引:2  
概述了半固态模锻的基础理论研究及其应用现状,分析探讨了这种新型技术及其加工工艺的特性和工程应用,并展望了半固态模锻在我国的发展前景。  相似文献   

9.
流变模锻A356铝合金的显微组织和力学性能   总被引:4,自引:0,他引:4  
王顺成  戚文军  郑开宏  周楠  李林 《锻压技术》2011,36(4):127-129,133
采用机械搅拌法制备A356合金半固态浆料,在200 t油压机上进行流变模锻成形,研究了流变模锻试样热处理前后的组织和力学性能.结果表明:流变模锻试样组织由球形α-Al晶粒和α+Si共晶组织组成;热处理前试样抗拉强度为261.7 MPa,伸长率为4.1%;经T6热处理后,试样抗拉强度为347.8 MPa,提高了32.9%...  相似文献   

10.
ZL101A铝合金半固态连铸坯料的组织和力学性能   总被引:1,自引:0,他引:1  
用电磁搅拌水平连铸设备制备ZL1 0 1A铝合金半固态连铸坯料 ,获得了两种非树枝晶组织 ,一种是初晶α Al呈短棒状的组织 ;另一种是初晶α Al呈短棒状和等轴状的混合组织。对短棒状组织连铸坯料进行T6热处理及力学性能测试 ,结果表明热处理使σb 和δ提高。  相似文献   

11.
EMS-DC法制备的半固态ZL101A铝合金的组织与性能   总被引:2,自引:1,他引:2  
研究了EMS DC法工艺参数对半固态ZL1 0 1A合金组织的影响 ,阐明了浇注温度 (中间包温度 )、拉坯速度、冷却速度与合金组织形貌的关系。研究表明 :在 0 .0 8~ 0 .0 9T的磁感应强度作用下 ,当铝合金在固液两相区的冷却速度小于 0 .3℃ /s时 ,即能得到较理想的非树枝晶组织。在优化各工艺参数的基础上 ,形成了半固态ZL1 0 1A合金的水平半连续铸造中试生产技术 ,其连铸坯铸态和热处理态强塑性综合指标分别为 430 .4和 497.4。  相似文献   

12.
13.
研究了ZL201铝合金半固态流变压铸组织与性能,包括半固态浆料的制备、压铸成形和固溶、时效处理。结果表明:在ZL201铝合金液相线温度附近施加交变电磁场,能够获得均匀、细小、近球形非枝晶组织的半固态浆料;半固态浆料经压铸成形后,零件具有等轴或蔷薇状晶粒组织;经T5热处理后,ZL201铝合金的抗拉强度为253N/mm2,伸长率为7%。流变压铸件的组织和性能优于半固态触变压铸件的。  相似文献   

14.
通过向ZL205A合金铸锭中添加不同比例的重熔料,进行重熔、浇注.对利用ZL205A合金组织遗传性细化合金品粒、提高合金力学性能进行初步研究.结果表明,ZL205A合金添加不同含量重熔料后,合金组织均有所细化;合金性能随着重熔料含量的增加先增大后减小.当重熔料含量为20%时,合金组织最为细小,晶粒尺寸达到33um左右:铸态力学性能达到最优,抗拉强度比原料ZL205A合金抗拉强度提高了11.6%,屈服强度和伸长率均较高,分别为87.6MPa及7.5%.进一步增加重熔料含量,合金组织粗化,力学性能逐渐恶化.  相似文献   

15.
运用金相显微镜、扫描电镜、能谱仪等设备,研究了镧铈混合稀土对ZL101铝合金组织和性能的影响,同时考察固溶、时效对变质及未变质合金微观组织和性能的影响.结果表明:稀土变质可有效地促进初生相的粒状化,针状共晶硅由在晶界聚集变得分散,并且尺寸也有所减小,但对合金力学性能的提高程度不明显.经过固溶、时效处理后,α(Al)和共晶硅的形态明显改善,α(Al)由树枝状、花瓣状变为粒状、等轴状,共晶硅则几乎全部变为球状且呈弥散分布,合金的力学强度性能提高幅度比铸态试样的大,增加幅度平均为90N/mm2~110N/mm2.  相似文献   

16.
采用CO2激光器在无填充金属的条件下对ZL109铝硅合金进行焊接,研究了焊接接头的微观组织与力学性能.结果表明,焊缝组织由胞状枝晶和树枝晶组成,焊缝物相主要是α-Al,Si和Mg2Si.焊缝显微硬度高于热影响区和母材,当焊接速度为3.0m/min,其平均值为125HV0.05.热输入对接头力学性能有显著的影响,随着热输入的增大,接头抗拉强度和断后伸长率均先增加后降低,当热输入为44J/mm时,接头抗拉强度和断后伸长率值最高(121.2MPa,4.3%),断裂发生在热影响区,断口表面具有脆性断裂特征.  相似文献   

17.
工艺参数对液态模锻ZL102合金组织及力学性能的影响   总被引:1,自引:0,他引:1  
ZL102合金的铸造性能良好,但力学性能较低。通过液态模锻工艺得到的ZL102制件,其力学性能比金属型铸造制件提高,组织细化。文章讨论了制件施加不同的压力及选择不同的工艺参数,对其组织和力学性能的影响。施加60kN的力时,组织细密,抗拉强度很高,耐磨性好,但同时塑性却相对较低;合金浇注温度在640℃时,强度最高,抗拉强度以及拉伸率等则随模具预热温度的升高,而呈现不规则的下降趋势。  相似文献   

18.
The microstructure, precipitate type, precipitate distribution and tensile strength of a ZL205 alloy, before and after ageing treatment, have been studied by means of optical microscopy and transmission electron microscopy. The results showed that the as-cast microstructure of the alloy was made up of α-Al and eutectic phase distributed at the grain boundaries. During ageing treatment, the tensile strength increased at first and then reduced with time, and the highest ultimate tensile strength was found to be around 488.2 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号